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ABSTRACT 

 
Basu and Basu (1998) considered the empty cell penalty for the family of power-divergence measures, defined 

by Cressie and Read (1984), in multinomial models. This penalty gives the chance to change the weight put on 
empty cells in contingency tables by the family of power-divergence measures. Cressie and Pardo (2000) intro-
duced the family of ordinary power-divergence test statistics to test nested log-linear models. This family includes 
the likelihood ratio and Pearson’s chi-squared test statistics. In this study, we define the family of penalized power-
divergence test statistics by using penalized power-divergence measure and penalized power-divergence estimators 
in the family of ordinary power-divergence test statistics. We compare these two families of test statistics for small 
samples in terms of size and power properties based on both asymptotic and finite sample (using a designed simula-
tion study) results. We consider three-way contingency tables distributed according to a multinomial distribution 
with probabilities belonging to a log-linear model. Our results reveal penalization improves the size and power 
properties of ordinary power-divergence test statistics. 
 

Keywords: Contingency table, Log-linear models, Power-divergence measure, Penalized power-Divergence 
measure. 
 
 

ÜÇ YÖNLÜ OLUMSALLIK TABLOLARINDA LOGARİTMİK-DOĞRUSAL MODELLERİN 
SIRADAN VE CEZALANDIRILMIŞ GÜÇ-SAPMA TEST İSTATİSTİKLERİ İLE TEST 

EDİLMESİ 
 

ÖZ 
 

Basu ve Basu (1998) çoklu örnekleme modellerinde Cressie ve Read (1984) tarafından tanımlanan güç-sapma 
ölçümleri ailesi için boş hücre cezası tanımlamışlardır. Bu ceza olumsallık tablolarında boş hücrelere güç-sapma 
ölçümleri tarafından atanan ağırlıkları değiştirme imkanı tanımaktadır. Cressie ve Pardo (2000) iç içe geçmiş loga-
ritmik doğrusal modellerin test edilmesi için sıradan güç-sapma test istatistikleri ailesini önermişlerdir. Bu aile ola-
bilirlik oran testi ve Pearson’ın ki-kare test istatistatistiklerini de içermektedir. Bu çalışmada, sıradan güç-sapma 
test istatistikleri ailesinde cezalandırılmış güç-sapma ölçümleri ve tahmincileri kullanılarak cezalandırılmış güç-
sapma test istatistikleri ailesi tanımlanmıştır. Sıradan güç-sapma test istatistikleri ailesi ile önerilen cezalandırılmış 
güç-sapma test istatistikleri ailesinin küçük örneklem birinci tip hata ve güç özellikleri örneklem genişliği sonsuza 
giderken ve sonlu örneklem (özel tasarlanmış benzetim çalışması kullanarak) durumlarına göre karşılaştırılmıştır.  
Benzetim çalışması için olasılıkların logaritmik-doğrusal modele uyduğu çoklu örneklem dağılımına sahip olan üç-
boyutlu olumsallık tabloları baz alınmıştır. Benzetim çalışması sonuçları boş hücrelere verilen cezanın sıradan güç-
sapma test istatistikleri ailesinin birinci tip hata ve güç özelliklerini geliştirdiğini göstermektedir. 
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1. INTRODUCTION 
 

Log-linear models describe the association pat-
terns among categorical variables by modeling ex-
pected cell counts in the contingency tables without 
distinguishing between independent and dependent 
variables. These models are linear in their logarithms 
and as stated by Christensen (1990), they have great 
advantages of flexibility and interpretability. The use 
of log-linear modeling is more appropriate in situations 
where applied researchers are interested in the various 
pairwise and higher order associations among set of 
independent variables. Lee and Viele (2001) used log-
linear models for modeling data from train waybills 
particularly focusing on revealing the relationships be-
tween cargo volume and origin, destination and com-
modity type. Log-linear models are also used in sur-
vival analysis as accelareted failure time models 
(Christensen, 2000). More detailed information on log-
linear models can be found in Agresti (1996), Chris-
tensen (1990), and Bishop et al. (1975). 
 

Basu and Basu (1998) have proposed an empty 
cell penalty for the power-divergence measures pre-
sented by Cressie and Read (1984). This penalty gives 
the chance to change the weight put on empty cells in 
contingency tables by the family of power-divergence 
measures. Cressie and Pardo (2000) introduced the 
family of ordinary power-divergence test statistics to 
test nested log-linear models. In this paper, we define 
the family of penalized power-divergence test statis-
tics. We compare the size and power properties of 
these two families of test statistics for testing log-
linear models in three-way contingency tables based 
on both asymptotic and finite sample (using a designed 
simulation study) results. Our purpose is to show that 
the family of penalized power-divergence test statistics 
performs better than the family of ordinary power-
divergence test statistics for small samples.  
 

The rest of the paper is laid out as follows: After 
giving the descriptions of the log-linear models and 
power-divergence measures in next section, we will 
review the distributional properties of ordinary and 
penalized power-divergence test statistics in section 
three, and we will present our simulation results in sec-
tion four. 
 
2. LOG-LINEAR MODELS AND POWER-
DIVERGENCE MEASURES 
 

Let X, Y and Z be three categorical response va-
riables having I, J and K levels, respectively. When we 
classify on these three variables, we have IJK possible 
combinations of classifications. pijk (θ ) = P(X = i, Y  = 
j, Z = k), i = 1,…, I; j = 1,…, J; k = 1,…, K, is a proba-
bility distribution of the responses (X, Y, Z) of a sub-
ject randomly chosen from a population. This distribu-
tion is assumed to be unknown, but belonging to a 
known family, 
 
P = {p(θ ) = (p111(θ ), …, pIJK (θ ))T: θ ∈ Θ} 

of distributions with components taking values on χ = 
{(i, j, k) ∈ I x J x K} with parameter space Θ ⊆ Rt (t < 
IJK – 1). Hence, the true value, θ0, of parameters vec-
tor θ = (θ 1, …, θ t )T ∈ Θ is assumed to be unknown. 
 

Consider a sample S1, …, Sn of size n on (X,Y, Z). 
The statistic (N111, …, NIJK)T is sufficient for statistical 
model under consideration where Nijk denotes the ob-
served frequency in ijk-th cell for (i, j, k) ∈ I x J x K. 
Poisson, multinomial and product-multinomial sam-
plings are among the possible sampling distributions 
for (N111, …, NIJK)T. For Poisson sampling, the total 
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for i = 1,..., I; j = 1,..., J; k = 1,...,K.                           (2) 
 
1 x t vector ( ))()(1 ,..., ijktijk 

T
ijk ww=w  in equation (2) 

forms the IJK x t log-linear model matrix of explanato-
ry variables W = (w111, …, wIJK)T which is assumed to 
have full column rank t < IJ K– 1. Elements of this ma-
trix are determined according to linear constraints on 
the parameter vector θ. Columns of W are linearly in-
dependent of the IJK x 1 column vector (1, …, 1)T. 
Matrix form of the log-linear model given in (2) is  
 
log p(θ *) = Dθ *                                                       (3) 
 
with IJK x (t + 1) “design matrix” D = (1IJK x 1, WIJK x 

t).θ * = (u, θ 1, …, θ t)T is a (t + 1) x 1 column vector 
with 
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which is overall mean effect parameter and calculated 
as the normalizing constant to insure 
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meters are as follows; 
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Since the parameter values are unknown, they 

need to be estimated. When it comes to estimation, 
maximum likelihood estimator (MLE) is the mostly 
used estimator. MLE is known to be efficient in regu-
lar models but it is also known to be nonrobust 
(Menéndez et al 2001). The efficiency as well as the 
nonrobustness are resulting from specific properties of 
the logarithmic function used in the definition of the 
function (Pardo et al. 2001). By replacing the loga-
rithmic function by other functions with appropriate 
properties, a new class of estimators such as minimum 
φ-divergence estimators can be obtained.  
 

φ-divergence measure is a density based diver-
gence and has been defined by Csiszár (1967) as fol-
lows; 
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where p = (p1, ..., pm)T and q = (q1, ..., qm)T are discrete 
probability distributions. Φ* is the class of all convex 
functions φ(x), x > 0, such that at x = 1, φ(1) = 0 and 

0)1( >φ′′ , and at x = 0, 0φ(0/0) = 0 and 
uup u /)(lim)0/(0 φ=φ ∞→ . For every φ ∈ Φ* that is 

differentiable at x = 1, the function 
)1)(1()()( −φ′−φ≡ψ xxx  also belongs to Φ*. Then 

)(xψ  and )(xφ  are equivalent functions with ψ  hav-
ing additional property of 0)1( =ψ′ . See Lindsay 
(1994) and Morales et al. (1995) for the asymptotic 
properties of the minimum φ-divergence estimators, 
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An important family of φ-divergences is the pow-

er-divergence family defined by Cressie and Read 
(1984) with 
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−→λ , since it is not defined at 

these values. For three-way contingency tables, power-
divergence measure between p̂  and p(θ ) can be de-
fined by the formula; 
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where T
IJKpp )ˆ,...,ˆ(ˆ 111=p  with 

n
n

p ijk
ijk =ˆ  and 

T
IJKpp ))(),...,(( 111 θθθp =)(  are observed relative 

frequencies (the estimator of saturated model) and true 
probability vectors, respectively. Minimum power-
divergence estimator as the value minimizing 

),ˆ( )(θppλI  with respect to θ is defined by 
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For λ → 0, (10) is equal to minimum Kullback-Leibler 
divergence estimator which is equivalent to the MLE 
of θ. There are other estimators less known than MLE 
and included in the power-divergence family. For ex-
ample, (10) is equivalent to minimum Pearson’s chi-
squared estimator for λ = 1, minimum Cressie-Read 
divergence estimator for λ = 2/3, minimum Matusita 
distance estimator for λ = -1/2, and minimum discrim-
ination information estimator for λ → -1. 
 

Harris and Basu (1997) have considered power-
divergence family in the following form; 
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The second component in (11) does not contribute 
anything to the measure and comes from using 

)1)(1()()( −φ′−φ≡ψ xxx  instead of )(xφ . Since 
)(xφ  and )(xψ  are equivalent, equations given with 

(9) and (11) define the same divergence.  
 

When it comes to small samples, MLE can per-
form better in terms of efficiency than many of the 
more robust estimators. Basu and Basu (1998) claim 
that this unfortunate trade off between robustness and 
small sample efficiency appears to be partly due to the 
disproportionately large weight that these divergences 
put on empty cells. To deal with that Basu and Basu 
(1998) have proposed an empty cell penalty for the 
minimum power-divergence estimators in multinomial 
models and separated equation (11) as follows; 
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Equation (12) is comprised of two parts; the part for 
the nonempty cells and the part for the empty cells. 
The second component can become very large for the 
values of λ closer to -1. By applying penalty on empty 
cells in equation (12), we get the penalized power-
divergence family as given by (13); 
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where w is the penalty put on empty cells. By increas-
ing or decreasing the penalty, power-divergence meas-
ure can be made more or less sensitive to empty cells. 
Penalized minimum power-divergence estimator can 
be defined by  
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Θ

)(θppθ wP P
w

λ
∈θ

λ ≡                                 (14) 

 
As it is seen, ),ˆ(),ˆ( 1

00 )()( θppθpp PI =  and 

),ˆ(),ˆ( 5.0
11 )()( θppθpp PI = , i.e. when w = 1, the 

penalized power-divergence puts the same weight on 
empty cells as Kullback-Leibler divergence does whe-
reas when w = 0.5, it puts the same weight as Pear-
son’s chi-squared does. For the values of λ ≤ -1, 

),ˆ( )(θppλI  can not be defined even if there is only 
one empty cell. But, this is not the case for 

),ˆ( )(θppwPλ , since empty cells component does not 
depend on λ. Note that reweighting empty cells will 
not alter the asymptotic properties of corresponding 
estimator (Pardo and Pardo, 2003). 
 

To test nested log-linear models Hnull : Hl+1 against 
Halt : Hl,  with Hnull nested in Halt, Cressie and Pardo 
(2000, 2002) have suggested the following families of 
test statistics  
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where φ1 and φ2 are convex functions, and )1(
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lIθ  and 
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2
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φθ  are defined by (10) under the models of Hl+1 and 

Hl , respectively. By using penalized power-divergence 
measure and penalized minimum power-divergence 
estimators instead of ordinary ones in (16), we can de-
fine the following family of penalized power-diver-

gence test statistics 
 

})ˆ,ˆ()ˆ,ˆ({
)1(

2)( )()1(

1

)(
, 212121

)(-)( lPwlPwlw ww
PPnPS φ

+
φφφ φφφ′′

= θppθpp

                                                                                 (17) 
 

where )1(
2

ˆ +
φ

lPw
θ  and )(

2
ˆ lPw

φθ  are defined by (14) under 
the models of Hl+1 and Hl, respectively. 
 
3. DISTRIBUTIONAL PROPERTIES OF 
POWER DIVERGENCE TEST STATISTICS 
UNDER NULL AND CONTIGUOUS ALTER-
NATIVE HYPOTHESES 
 

Our work has been motivated by the work of 
Cressie et al. (2003) which involves a nested sequence 
of hypotheses∗,  
 
Hl : p = p(θ );   θ  ∈ Θl ;   l = 1, ..., m,   m ≤ t < IJK-1, 
                                                                                 (18) 
 
where p(θ ) = (p1(θ ), …, pIJK (θ ))T and θ = (θ 1, …, θ t 
)T ∈ Θl. Θl is the parameter space for the Hl such that 
Θm ⊂  Θm-1 ⊂  ... ⊂ Θ1 ≡  Θ ⊆ Rt; t < IJK-1 and dim(Θl) 
=dl with dm < dm-1 < ... < d1 = t. Cressie et al. (2003)’s 
strategy is to test successively, 
 
Hnull : Hl+1 against Halt : Hl;   l = 1, ..., m-1,              (19) 
 
until the first l for which Hl+1 is rejected as a null hy-
pothesis. Cressie et al. (2003) have used the family of 
test statistics given by (15) to test these nested hypo-
theses. When )(

, 21
)( lOT φφ  > c, we reject Hnull where c is 

specified so that the size of the test is α; 
 

α=> +φφ ))(( 1
)(
, 21 l

l HcOTP ; α ∈ (0, 1)                 (20) 
 
Cressie and Pardo (2000, 2002) have shown that under 
multinomial sampling with probabilities belonging to a 
log-linear model and Hnull : Hl+1, the test statistic 

)(
, 21

)( lOT φφ  converges in distribution to a chi-squared 
distribution with d1 - d1+1degrees of freedom; l = 1, ..., 
m-1. Hence, 
 

)1(2
1
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where ppP ff =χ≤χ ))(( 22 . Cressie and Pardo (2000) 

have established that )(
, 21

)( lOT φφ  and )(
, 21

)( lOS φφ  are 
asymptotically equivalent under null hypothesis. In 
other words, under Hnull : Hl+1, )(

, 21
)( lOS φφ  has chi-

squared distribution with d1 - d1+1 degrees of freedom;  

                                                 
∗ Dimensions are adapted to our case. 
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l = 1, ..., m-1. The family of )(
, 21

)( lOS φφ  yields the like-

lihood ratio test statistic when )0(21 φ≡φ≡φ . More-
over, when )1(1 φ≡φ  and )0(2 φ≡φ , the family yields 
a statistics based on the difference of Pearson chi-
squared statistics with maximum likelihood estimation 
used to obtain expected frequencies (e.g., Agresti 
(1996, p. 197)). However, the nonnegativity of 

)(
, 21

)( lOS φφ  does not hold when 21 φ≠φ (Cressie and 
Pardo, 2000). Thus, for the case considered by Agresti, 
the difference of Pearson chi-squared statistics is not 
necessarily nonnegative. 
 

On the contrary to Hnull, theoretical results for 
)(
, 21

)( lOT φφ  and )(
, 21

)( lOS φφ  under alternative hypothes-
es are not easy to obtain except for an appropriately 
specified sequence of contiguous alternatives (also 
known as Pitman alternatives). Regarding these alter-
natives, Haberman (1974) was the first to study them. 
He has proved that the asymptotic distribution of the 
likelihood ratio and Pearson’s test statistics under the 
sequence of contiguous alternatives is non-centrally 
chi-squared with d1 - d1+1 degrees of freedom. Oler 
(1985) and Fenech and Westfall (1988) have presented 
studies regarding these contiguous alternative hypo-
theses in multinomial populations with probabilities 
belonging to log-linear models. Later, Cressie et al. 
(2003) have defined the sequence of contiguous alter-
native hypotheses; 
 
 nH nnl /)(:,1 sθpθpp +==+ )( , θ ∈ Θl+1, n  ≥  n0  > 0, 
                                                                                 (22) 
 
which is contiguous to the null hypothesis Hl+1 where 
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the multinomial distribution. For multinomial sam-
pling with probabilities belonging to a log-linear mod-
el, they have proved that under the sequence of conti-
guous alternative hypotheses given by (22), )(

, 21
)( lOT φφ  

has non-central chi-squared distribution with d1 - d1+1 
degrees of freedom; l = 1, ..., m-1. Non-centrality pa-
rameter for this distribution is, 
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l+1,  and T

)(  diag )()()( θpθpθpΣ θP −= . So, as n 
→∞,  
 

)( 2
,1

cP
ll ddn >χ→π µ− + ,                                   (24) 

 
where ))(( ,1

)(
, 21 nl

l
n HcOTP +φφ >≡π  

 
Based on the results established by Cressie and 

Pardo (2000), Haberman (1974), Oler (1985) and Fe-
nech and Westfall (1988), there is no doubt about that 

)(
, 21

)( lOT φφ  and )(
, 21

)( lOS φφ  are asymptotically equiva-
lent under the sequence of contiguous alternative hy-
potheses given by (22). In this paper, we compare 

)(
, 21

)( lOS φφ  and )(
, 21

)( lwPS φφ  in terms of size and power 
properties for testing  nested log-linear models in 
three-way contingency tables under the assumption of 
multinomial sampling. As mentioned by Basu and Ba-
su (1998), the family of penalized power-divergence 
test statistics has the same asymptotic distribution with 
the family of ordinary power-divergence measures 
since they differ only in empty cells. Hence, we only 
focus on small sample properties of these test statistics. 
Our comparison is based on both asymptotic and finite 
sample (using a designed simulation study) results. We 
describe these results in following section. 
 
4. SIMULATION STUDY 
 

In simulation study, we consider the case of 2 x 2 
x 2 contingency tables, so we have eight possible 
combinations, i.e. IJK = 8. Among the nested models, 
we consider the following two hypotheses for brevity. 
 
H1: pijk(θ ) = exp [u + θ 1(i) + θ 2 (j) + θ 3 (k) +θ 12(ij) ];    i,  
j, k = 1, 2 
 
H2: pijk(θ ) = exp [u + θ 1(i) + θ 2 (j) + θ 3 (k)];   i, j, k= 1, 2 
 
Following Oler (1985), we chose moderate main ef-
fects exp [θ 1(1)] = exp [θ 2(1)] = exp [θ 2(1)] = 5/6 and 
big interaction effect exp [θ 12(11)] = 3/4   with the li-
near constraints given by (5). Overall mean effect pa-
rameter u is calculated as given by (4). 
 

Let p0 ∈ Hnull and p1, n ∈ Halt. Here, p1, n is sub-
scripted with n, since its entries may depend on n. By 
this simulation study, we want to obtain the following 
exact probabilities: 
 

))(( )1(
,

)(
21

)1(

0pcOSPOS
n

>≡α φφ
, ))(( )1(

,
)(

21

)1(

n,p1cOSPOS
n

>≡π φφ
 

                                                                                 (25) 
 

))(( )1(
,

)(
21

)1(

0pcPSP wPS w

n
>≡α φφ

, ))(( )1(
,

)(
21

)1(

n,p1cPSP wPS w

n
>≡π φφ

 
                                                                                 (26) 
 
Penalization values (w) are chosen as 0.5 and 1. As 
mentioned above, the nonnegativity of )(

, 21
)( lOS φφ  does 

not hold when 21 φ≠φ . Thus, we only consider the 
combinations with )(21 λφ≡φ≡φ  with λ = -0.9, -0.8, 
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-0.7, -0.6, -0.5, 0, 2/3, 1. The other important reason to 
chose )(21 λφ≡φ≡φ  other than getting nonnegative 
test statistics is that it seems quite reasonable to match 
φ1 and φ2  as mentioned by Read and Cressie (1988, 
p.32). 
 

Our design for the simulation study is similar to 
the one carried out by Cressie et. al (2003). For a given 
p0 which is defined by (27), the various choices of n 
and p1, n represent the design. 
 
 p0 ∈ H2: pijk(θ)=exp [u+θ1(i)+θ2 (j)+θ3(k)]; i, j, k=1, 2. 
                                                                                 (27) 
 
Sample sizes considered for this simulation study are n 
= 15, 25, 35. To show that )(

, 21
)( lOS φφ  and )(

, 21
)( lwPS φφ  

are asymptotically chi-squared with d1 - d1+1 degrees of 

freedom under H2, we have also calculated 
)1()(OS

n
α  

and 
)1()( w

n

PSα  for n = 45, 75.  p1, n is chosen as both a 
contiguous and a fixed alternative which are defined 
by (28) and (29), respectively. 
 

)( 00 pppp*
n

−+= 11, n
25

,                              (28) 

 
p1∈H1: pijk(θ)=exp [u+θ1(i)+θ2(j)+θ3(k)+θ12(ij)]; i, j, k=1, 2 

                                                                                (29) 
As noticed, p1 is also used in the definition of conti-
guous alternative. As n increases, *

n
p

1,
 converges to p0 

at the rate of n-1/2; that is }*
n

{p
1,

 is a sequence of con-
tiguous alternatives. For n < 25, the contiguous alter-
natives are further from Hnull than are fixed alternatives 
and 11,25

pp* = . 
 

Exact probability estimations given with (25) and 
(26) are obtained using 1000 simulations from the 
multinomial distributions with (n, p0), (n, p1) and 
(n, *

n
p

1,
). All calculations have been done using Ma-

thematica 5.0 except the asymptotic power values 
which are obtained by Matlab 5.3.  As Cressie et. al. 
(2003), we use two basic criteria for a good perfor-
mance to compare test statistics: 1) Good exact power 
and size, 2) Good agreement of exact and asymptotic 
probabilities. For the first criteria, we consider Hnull : 
p0 ∈ H2 against Halt: p1 ∈ H1. For the second, we use 
Hnull :  p0 ∈ H2 against Halt : *

n
p

1,
. 

 
To compare the test statistics, we calculate 

),(),(),( ,,1 λλ−λλ≡λλ nCnC SEPAPg  and 
1

,,2 )),(),((),( −λλ−λλ≡λλ nFnF STSSEPg ),(, λλnCAP  
is the asymptotic power under contiguous alternative, 

),(, λλnCSEP  is the simulated exact power under con-
tiguous alternative, ),(, λλnFSEP  is the simulated ex-
act power under fixed alternative and ),(, λλnFSTS  is 

the simulated test size of the test statistic )1(
, )()(

)(
λλ φφiS  

for i = O, Pw . According to Fenech and Westfall 
(1988), and Cressie et al. (2003), approximation to the 
asymptotic power of )1(

, )()(
)(

λλ φφiS  can be obtained by 

defining 
sθpθp

nn
1)2()1( +≡ )()(

 where )( )2()1( )()( θpθps −= n  

and then substituting into the definition of µ, non-
centrality parameter, and then finally µ into the right 
side of (24). )( )1(θp  and )( )2(θp  are true probability 
vectors under the model H1 and H2, respectively. We 
consider the statistic )1(

, )()(
)(

λλ φφiS  to be better than the 

other statistic )1(
)(),( **)(

λφλφ
iS  iff  

 
),(),( **

11 λλ<λλ gg  and ),(),( **
22 λλ<λλ gg  

 
                                                                                 (30) 
 
For these comparisons, only the statistics that satisfy 
the following inequality are considered. 
 

eiS
n ≤−−− )α1(logit)α1(logit

)1()(
,                       (31) 

 
where logit(p) ≡ ln( p / (1- p)), i = (O) ordinary, (Pw) 
penalized. This inequality has been proposed by Dale 
(1986) and measures the closeness of nominal size and 
exact size obtained from the simulation. The two prob-
abilities are considered fairly close if they satisfy (31) 
with e = 0.7. For α = 0.05, which is nominal size of the 
power-divergence test statistics in this study, e = 0.7  
corresponds to  
 

]0959.0 ,0254.0[α
)1()( ∈iS

n                                        (32) 
 

The simulation results are given in Tables 1-9 at 
the end of the manuscript under the heading of Tables. 
Table 1-3, Table 4-6 and Table 7-9 show the exact size 
(

)1()(iT
nα ), (exact power-asymptotic power) and (exact 

power - exact size) values of )1(
)(),( 21

)( λφλφiS , respectiv-
ly.Since ),ˆ(),ˆ( 1

00 )()( θppθpp PI = and ),ˆ(),ˆ( 5.0
11 )()( θppθpp PI = , 

we get )1(
,

1)1(
, )0()0()0()0(

)()( φφφφ = PSOS  and )1(
,

5.0)1(
, )1()1()1()1(

)()( φφφφ = PSOS . 

Thus, the values in the tables corresponding to these 
estimators are equal.  
 

For n = 15, the statistics that satisfy (32) corres-
pond to the )1(

, )()(
)(

λλ φφOS  for λ = 1, 2/3, )1(
,

1
)()(

)(
λλ φφPS  

for λ = -0.5, -0.6, -0.7, -0.8, -0.9 and )1(
,

5.0
)()(

)(
λλ φφPS  
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for all of the values of λ. For negative values of λ, es-
pecially large negative values, exact sizes of 

)1(
, )()(

)(
λλ φφOS  are far behind satisfying (32). However, 

penalization improves the exact sizes of the test statis-
tics especially for large negative values of λ. Increas-
ing or decreasing the penalty value affects the sensitiv-
ity of the test statistics to empty cells. This causes the 
decreament of the exact size performances of some 
statistics as expected. For instance, as seen in Table 2 
exact sizes of (1)1

(1)(1)
)( φφ ,PS and (1)

,
1

(2/3)(2/3)
)( φφPS have 

increased since the weight put on empty cells in these 
test statistics increase with penalization value of w = 1. 
The improvement in the performance of the test statis-
tics )1(

, )()(
)(

λλ φφOS  for large negative values of λ due to 

penalty for n = 15 can clearly be seen at the histograms 
of the exact null distributions of )1(

, )()(
)(

λλ φφOS  and 
)1(

,
5.0

)()(
)(

λλ φφPS . Since the conclusions are same for 
)1(

, )9.0()9.0(
)O(S

−− φφ  and )1(
,

5.0
)9.0()9.0(

)P(S
−− φφ , we only 

present in here the histograms of the )1(
, )8.0()8.0(

)(
−− φφOS  

and )1(
,

5.0
)8.0()8.0(

)(
−− φφPS  for brevity. Our interest is in 

the right hand tail area of the histograms and how well 
2
1χ density approximates it.  

 

 
 

Fig. 1a.      Fig. 1b. 
 
Fig. 1a. Histogram of the null distribution of 

)1(
, )8.0()8.0(

)(
−− φφOS

 for n = 15 with density function of 
2
1χ distribution superimposed 

 
Fig. 1b. Histogram of the null distribution of 

)1(
,

5.0
)8.0()8.0(

)(
−− φφPS for n = 15 with density function of 

2
1χ distribution superimposed. 

 
Fig. 1a shows the histogram of )1(

, )8.0()8.0(
)(

−− φφOS , 

where the poor approximation to the 2
1χ  density is evi-

dent from the relatively heavy tail of the statistic. On 
the other hand, the right tail of the histogram 

)1(
,

5.0
)8.0()8.0(

)(
−− φφPS  is very well approximated by the 

2
1χ density. The vertical dashed lines on the histograms 

correspond to the 5% critical point of 2
1χ  (i.e. 

84.3)95.0(2
1 =χ=c  as defined by (21)). The usual 

likelihood ratio ( )1(
, )0()0(

)( φφOS ) does not satisfy (32), 

either. However, as seen from Table 3, penalization 
improves this statistic, too. For n = 25, all of the pena-
lized power-divergence test statistics and 

)1(
, )()(

)(
λλ φφOS  for λ = 0, 1, 2/3 satisfy (32). This is al-

so the same for n = 35 with two more statistics 
( )1(

, )5.0()5.0(
)(

−− φφOS  and )1(
, )6.0()6.0(

)(
−− φφOS ) satisfying 

(32). Since all of the ordinary power-divergence test 
statistics are all asymptotically equivalent, ordinary 
power-divergence test statistics with large negative 
values of λ get exact sizes very close to nominal size 
of 0.05 as n gets larger even though they behave en-
tirely opposite for small samples. To illustrate this be-
havior, we plot the departures of the exact sizes of 

)1(
, )()(

)(
λλ φφOS from the nominal size of 05.0=α  

against the sample sizes of 15, 25, 35, 45, and 75. This 
plot is given with Fig. 2. In general, as n gets larger, all 
of the power-divergence test statistics satisfy Eq.(32) 
by getting closer to the nominal size 05.0=α . 
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Fig.2 (Exact size - Nominal size of 0.05) for 

)1(
, )()(

)O(S
λλ φφ  

 
Regarding the departures of exact power of the 

ordinary test statistics from their asymptotic powers 
and from their exact sizes penalization improves them 
especially for large negative values of λ. Among all 
the test statistics that satisfy (32) for n = 15, the test 

statistics which satisfy (30) are 
)1(

,
5.0

)λ()λ(
)( φφPS  for 

λ = -0.8, -0.9. For n = 25 and 35, )1(
,

1
)()(

)(
λλ φφPS  with 

large negative values of λ perform better among the 
test statistics satisfying (32). 
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5. CONCLUSION AND DISCUSSION 
 

In this paper, we have defined the family of pena-
lized power-divergence test statistics by using pena-
lized power-divergence measure and penalized power-
divergence estimators in the family of ordinary power-
divergence test statistics. Our aim was to compare the 
size and power properties of ordinary and penalized 
power-divergence test statistics for testing log-linear 
models in three-way contingency tables for small sam-
ples. In general penalization improves the size and 
power properties of the ordinary power-divergence 
statistics in 2x2x2 contingency tables especially for 
large negative values of λ. It also appears that pena-
lized power-divergence test statistics with large nega-
tive values of λ perform better than all of the ordinary 
ones, including the likelihood ratio test statistic. It 
seems that penalization value of w = 0.5 is better for 
n=15, whereas w=1 is a better choice for n=25 and  
n=35. 
 

Standard log-linear models do not allow incorpo-
ration of ordered categories which can be encountered 
in lots of applied studies. One method of incorporating 
such information is to specify ordered factor scores 
and fit model which will no longer be log-linear  

(see, Christensen, 1990, Ch. V). The problem of 
considering models in which non-linear terms have 
been added was considered for the first time by Tukey 
(1949) who solved the problem of testing interaction in 
two-way ANOVA with one observation per cell. There 
have been several extensions of this test to the models 
with different functions of interactions. Alin and Kurt 
(2006) give detailed review of these methods. These 
are called two-stage tests procedure in which parame-
ters are first estimated using an additive model, and 
then the estimates are treated as known constants for 
the second stage of the test. Pardo and Pardo (2005) 
have presented the families based on φ-divergences 
and studied their size and power properties for testing 
non-additivity in log-linear models by using two-stage 
tests procedure as a method of testing non-additivity. 
Another study can be performed to see the size and 
power properties of the penalized power-divergence 
test statistics, especially for small samples.  
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Table 1. Exact sizes of )1(
, )()(

)(
λλ φφOS  under null hypothesis Hnull : p0 ∈ H2  

 
 λ  

n 0 1 2/3 -0.5 -0.6 -0.7 -0.8 -0.9 
15 0.1090 0.0560 0.0650 0.1520 0.1710 0.2050 0.2750 0.4050
25 0.0690 0.0520 0.0580 0.1110 0.1320 0.1670 0.2320 0.3390
35 0.0490 0.0370 0.0400 0.0710 0.0860 0.1050 0.1430 0.1790

 
 
Table 2. Exact sizes of )1(

,
1

)()(
)(

λλ φφPS  under null hypothesis Hnull : p0 ∈ H2  

 
 λ  

n 0 1 2/3 -0.5 -0.6 -0.7 -0.8 -0.9 
15 0.1090 0.1090 0.1070 0.0910 0.0880 0.0870 0.0840 0.0810
25 0.0690 0.0660 0.0670 0.0710 0.0690 0.0650 0.0670 0.0650
35 0.0490 0.0510 0.0500 0.0530 0.0530 0.0530 0.0530 0.0520

 
 
Table 3. Exact sizes of )1(

)(),(
5.0 )( λφλφPS  under null hypothesis Hnull : p0 ∈ H2  

 
 λ  

n 0 1 2/3 -0.5 -0.6 -0.7 -0.8 -0.9 
15 0.0500 0.0560 0.0530 0.0410 0.0400 0.0370 0.0340 0.0340
25 0.0570 0.0520 0.0530 0.0510 0.0500 0.0490 0.0490 0.0470
35 0.0370 0.0370 0.0360 0.0410 0.0420 0.0420 0.0430 0.0430
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Table 4. (Exact power-Asymptotic power) of )1(
, )()(

)(
λλ φφOS for testing Hnull : p0 ∈ H2 against Halt : *

n
p

1,
 where    p1 ∈ H1  

 
 λ  

n 0 1 2/3 -0.5 -0.6 -0.7 -0.8 -0.9 
15 0.1489 0.0359 0.0609 0.2349 0.2569 0.3009 0.3349 0.4209
25 -0.0071 -0.0601 -0.0441 0.0509 0.0779 0.1119 0.1519 0.1989
35 -0.0103 -0.0573 -0.0403 -0.0013 -0.0023 -0.0013 -0.0013 -0.0023

 
 
Table 5. (Exact power-Asymptotic power) of )1(

,
1

)()(
)(

λλ φφPS  for testing Hnull : p0 ∈ H2 against Halt : *
n

p
1,

 where p1 ∈ H1  

 
 λ  

n 0 1 2/3 -0.5 -0.6 -0.7 -0.8 -0.9 
15 0.1489 0.1559 0.1519 0.0949 0.0919 0.0909 0.0839 0.0799
25 -0.0071 -0.0131 -0.0101 -0.0041 -0.0021 -0.0001 -0.0001 -0.0001
35 -0.0103 -0.0293 -0.0233 -0.0013 -0.0023 -0.0013 -0.0013 -0.0013

 
 
Table 6. (Exact power-Asymptotic power) of )1(

,
5.0

)()(
)(

λλ φφPS  for testing Hnull : p0 ∈ H2 against Halt : *
n

p
1,

 where p1 ∈ H1, 

 
 λ  

n 0 1 2/3 -0.5 -0.6 -0.7 -0.8 -0.9 
15 0.0229 0.0359 0.0319 0.0079 0.0029 -0.0001 -0.0001 -0.0001
25 -0.0561 -0.0601 -0.0561 -0.0551 -0.0551 -0.0541 -0.0541 -0.0591
35 -0.0353 -0.0573 -0.0503 -0.0263 -0.0273 -0.0283 -0.0293 -0.0293

 
 
Table 7. (Exact power-Exact size) of )1(

, )()(
)(

λλ φφOS  for testing Hnull : p0 ∈ H2 against Halt :  p1 ∈ H1  

 
 λ  

n 0 1 2/3 -0.5 -0.6 -0.7 -0.8 -0.9 
15 0.0930 0.0830 0.0850 0.1250 0.1330 0.1430 0.1160 0.0710
25 0.2010 0.1650 0.1750 0.2170 0.2230 0.2220 0.1970 0.1370
35 0.3270 0.2770 0.2910 0.3300 0.3320 0.3270 0.3090 0.2900

 
 
Table 8. (Exact power-Exact size) of )1(

,
1

)()(
)(

λλ φφPS  for testing Hnull : p0 ∈ H2 against Halt :  p1 ∈ H1   

 
 λ  

n 0 1 2/3 -0.5 -0.6 -0.7 -0.8 -0.9 
15 0.0930 0.0940 0.0950 0.0810 0.0780 0.0790 0.0790 0.0800
25 0.2010 0.1980 0.2000 0.2020 0.2060 0.2120 0.2100 0.2120
35 0.3270 0.2920 0.3050 0.3320 0.3340 0.3320 0.3330 0.3340

 
 
Table 9. (Exact power-Exact size) of )1(

,
5.0

)()(
)(

λλ φφPS  for testing Hnull : p0 ∈ H2 against Halt : p1 ∈ H1  

 
 λ  

n 0 1 2/3 -0.5 -0.6 -0.7 -0.8 -0.9 
15 0.0830 0.0830 0.0830 0.0870 0.0870 0.0890 0.0920 0.0920
25 0.1640 0.1650 0.1680 0.1710 0.1720 0.1740 0.1740 0.1710
35 0.3070 0.2770 0.2880 0.3070 0.3060 0.3040 0.3040 0.3040
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