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In this paper, we established travelling wave solutions for some (2 + 1)-dimensional non-
linear evolution equations. The first integral method was used to construct travelling wave
solutions of nonlinear evolution equations. The travelling wave solutions are expressed by
the hyperbolic functions, the trigonometric functions and the rational functions. The first
integral method presents a wider applicability for handling nonlinear wave equations.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The investigation of the travelling wave solutions for nonlinear partial differential equations plays an important role in
the study of nonlinear physical phenomena. Nonlinear wave phenomena appears in various scientific and engineering fields,
such as fluid mechanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics
and geochemistry. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and convection are very impor-
tant in nonlinear wave equations. In the past several decades, new exact solutions may help to find new phenomena. A vari-
ety of powerful methods, such as inverse scattering method [1,2], bilinear transformation [3], the tanh–sech method [4–6],
extended tanh method [7–9], sine–cosine method [10,11], homogeneous balance method [12], Exp-function method [13–15]
and Riccati equation method [16] were used to develop nonlinear dispersive and dissipative problems.

The pioneer work Feng [17] introduced the first integral method for a reliable treatment of the nonlinear PDEs. The useful
first integral method is widely used by many such as in [18,19] and by the reference therein.

Our first interest in the present work is in implementing the first integral method to stress its power in handling nonlin-
ear equations, so that one can apply it to models of various types of nonlinearity. In Section 2, we describe this method for
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finding exact travelling wave solutions of nonlinear evolution equations. In Section 3 to Section 4, we illustrate this method
in detail with the celebrated the modified Zakharov–Kuznetsov (MZK) equation and ZK-MEW equation. In Section 5, some
conclusions are given.

2. The first integral method

Raslan has summarized for using first integral method [20].

Step 1. Consider a general nonlinear PDE in the form
Pðu;ut ;ux;uxx;utt ;uxt ;uxxx; . . .Þ ¼ 0: ð2:1Þ
Using a wave variable n ¼ x� ct. We can rewrite Eq. (2.1) in the following nonlinear ODE
QðU;U0;U00;U000; . . .Þ ¼ 0: ð2:2Þ
where the prime denotes the derivation with respect to n. Eq. (2.2) is then integrated as long as all terms contain deriv-
atives where integration constants are considered zeros.

Step 2. Suppose that the solution of ODE (2.2) can be written as follows:
uðx; tÞ ¼ f ðnÞ: ð2:3Þ
Step 3. We introduce a new independent variable
XðnÞ ¼ f ðnÞ; Y ¼ fnðnÞ; ð2:4Þ
which leads a system of
XnðnÞ ¼ YðnÞ;
YnðnÞ ¼ FðXðnÞ;YðnÞÞ:

ð2:5Þ
Step 4. By the qualitative theory of ordinary differential equations [21], if we can find the integrals to (2.5) under the same
conditions, then the general solutions to (2.5) can be solved directly. However, in general, it is really difficult for us
to realize this even for one first integral, because for a given plane autonomous system, there is no systematic the-
ory that can tell us how to find its first integrals, nor is there a logical way for telling us what these first integrals
are. We will apply the Division Theorem to obtain one first integral to (2.5) which reduces (2.2) to a first order inte-
grable ordinary differential equation. An exact solution to (2.1) is then obtained by solving this equation. Now, let
us recall the Division Theorem:
Division theorem: Suppose that Pðw; zÞ;Qðw; zÞ are polynomials in Cðw; zÞ and Pðw; zÞ is irreducible in Cðw; zÞ. If Qðw; zÞ
vanishes at all zero points of Pðw; zÞ, then there exists a polynomial Gðw; zÞ in Cðw; zÞ such that
Q ½w; z� ¼ P½w; z�G½w; z�: ð2:6Þ
3. The modified Zakharov–Kuznetsov equation

Consider the modified Zakharov–Kuznetsov equation
ut þ u2ux þ uxxx þ uxyy ¼ 0: ð3:1Þ
Using the wave variable n ¼ xþ y� ct; the Eq. (3.1) is carried to a ODE
�cu0 þ u2u0 þ 2u000 ¼ 0: ð3:2Þ
where the prime denotes the derivation with respect to n. Integrating (3.2) with respect to n and considering the zero con-
stants for intergation we obtain
�cuþ u3

3
þ 2u00 ¼ 0: ð3:3Þ
Using (2.4) we get

_XðnÞ ¼ YðnÞ; ð3:4Þ

_YðnÞ ¼ cXðnÞ
2
� X3ðnÞ

2
: ð3:5Þ
According to the first integral method, we suppose that XðnÞ and YðnÞ are nontrivial solutions of (3.4), (3.5), and
qðX;YÞ ¼

Pm
i¼0aiðXÞYi is an irreducible polynomial in the complex domain C½X;Y � such that
q½XðnÞ; YðnÞ� ¼
Xm

i¼0

aiðXÞYi ¼ 0; ð3:6Þ
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where aiðXÞ; ði ¼ 0;1; . . . ;mÞ are polynomials of X and amðXÞ–0. Eq. (3.6) is called the first integral to (3.4), (3.5), due to the
Division Theorem, there exists a polynomial gðXÞ þ hðXÞY in the complex domain C½X;Y� such that
dq
dn
¼ oq

oX
oX
on
þ oq

oY
oY
on
;

¼ ½gðXÞ þ hðXÞY�
Xm

i¼0

aiðXÞYi
ð3:7Þ
In this example, we take two different cases, assuming that m ¼ 1 and m ¼ 2 in Eq. (3.6).

CaseI : Suppose that m ¼ 1, by equating the coefficients of Yiði ¼ 0;1;2Þ on both sides of Eq. (3.7), we have

_a1ðXÞ ¼ hðXÞa1ðXÞ; ð3:8Þ
_a0ðXÞ ¼ gðXÞ þ hðXÞa0ðXÞ; ð3:9Þ

a1ðXÞ _Y ¼ gðXÞa0ðXÞ ¼ a1ðXÞ
cX
2
� X3

2

 !
: ð3:10Þ
Since aiðXÞ ði ¼ 0;1Þ are polynomials, then from (3.8) we deduce that a1ðXÞ is constant and hðXÞ ¼ 0. For simplicity, take
a1ðXÞ ¼ 1. Balancing the degrees of gðXÞ and a0ðXÞ, we conclude that degðgðXÞÞ ¼ 1 only. Suppose that gðXÞ ¼ A1X þ B0,
and A1–0, then we find a0ðXÞ
a0ðXÞ ¼
A1

2
X2 þ B0X þ A0: ð3:11Þ
Substituting a0ðXÞ; a1ðXÞ and gðXÞ in Eq. (3.10) and setting all the coefficients of powers X to be zero, then we obtain a system
of nonlinear algebraic equations and by solving it, we obtain
A1 ¼ �
ffiffiffi
3
p

3
i; B0 ¼ 0; c ¼ �2

ffiffiffi
3
p

3
iA0: ð3:12Þ
where A0 is free parameter. Using Eq. (3.12) into Eq. (3.6), we obtain
YðnÞ ¼ �
ffiffiffi
3
p

3
iX2ðnÞ � A0; ð3:13Þ
Combining (3.13) with (3.4), we obtain the exact solution to (3.5) and then the exact solution to the modified Zakharov–Kuz-
netsov equation (3.1) can be written as
XðnÞ ¼ � 2
ffiffiffi
3
p

i
A0

 !1=2

tan

ffiffiffi
3
p

i
6

A0

 !1=2

ðnþ c0Þ

2
4

3
5; ð3:14Þ
where c0 is integration constant. If we take
A ¼ � 2
ffiffiffi
3
p

i
A0

 !1=2

and B ¼
ffiffiffi
3
p

i
6

A0

 !1=2

;

then the travelling wave solution to the modified Zakharov–Kuznetsov equation (3.1) can be written as
uðx; y; tÞ ¼ A tan B xþ y� 2
ffiffiffi
3
p

3
iA0t þ c0

 !" #
: ð3:15Þ
Case II : Suppose that m ¼ 2, by equating the coefficients of Yiði ¼ 0;1;2;3Þ on both sides of Eq. (3.7), we have
_a2ðXÞ ¼ hðXÞa2ðXÞ; ð3:16Þ
_a1ðXÞ ¼ gðXÞa2ðXÞ þ hðXÞa1ðXÞ; ð3:17Þ
_a0ðXÞ ¼ �2a2ðXÞ _Y þ gðXÞa1ðXÞ þ hðXÞa0ðXÞ; ð3:18Þ

a1ðXÞ _Y ¼ gðXÞa0ðXÞ ¼ a1ðXÞ
cX
2
� X3

2

 !
: ð3:19Þ
Since a2ðXÞ is a polynomial of X, then from (3.16) we deduce that a2ðXÞ is constant and hðXÞ ¼ 0. For simplicity, take
a2ðXÞ ¼ 1. Balancing the degrees of gðXÞ and a0ðXÞ, we conclude that degðgðXÞÞ ¼ 1 only. Suppose that gðXÞ ¼ A1X þ B0,
and A1–0, then we find a1ðXÞ and a0ðXÞ as
a1ðXÞ ¼
A1

2
X2 þ B0X þ A0: ð3:20Þ

a0ðXÞ ¼
A2

1

8
þ 1

12

 !
X4 þ A1B0

2
X3 þ A0A1

2
þ B2

0

2
� c

2

 !
X2 þ A0B0X þ d: ð3:21Þ
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Substituting a0ðXÞ; a1ðXÞ; a2ðXÞ and gðXÞ in Eq. (3.19) and setting all the coefficients of powers X to be zero, then we obtain a
system of nonlinear algebraic equations and by solving it, we obtain
A1 ¼ �
2
ffiffiffi
3
p

3
i; B0 ¼ 0; c ¼

ffiffiffi
3
p

3
iA0; d ¼ A2

0

4
; ð3:22Þ
where A0 is free parameter. Using Eq. (3.22) into Eq. (3.6), we obtain
YðnÞ ¼ �
ffiffiffi
3
p

6
iX2ðnÞ � A0

2
: ð3:23Þ
Combining (3.23) with (3.4), we obtain the exact solution to (3.5) and then the exact solution to the modified Zakharov–Kuz-
netsov equation (3.1) can be written as
XðnÞ ¼ �1
i

ffiffiffi
3
p

A0i
� �1=2

tan
3
ffiffiffi
3
p

A0i
� �1=2

6
ðnþ c0Þ

2
64

3
75; ð3:24Þ
where c0 is integration constant. If we take
C ¼
ffiffiffi
3
p

A0i
� �1=2

;

then the travelling wave solution to the modified Zakharov–Kuznetsov equation (3.1) can be written as
uðx; y; tÞ ¼ iC tan

ffiffiffi
3
p

6
C xþ y� C2

3
t þ c0

 !" #
: ð3:25Þ
Comparing our results and Wazwaz’s results [22] with Bekir’s results [23] then it can be seen that the results are same.

4. The ZK-MEW equation

Let us consider the ZK-MEW equation [24]:
ut þ aðu3Þx þ ðbuxt þ ruyyÞx ¼ 0; ð4:1Þ
where a; b and r are known constants.
Using the wave variable n ¼ xþ y� ct and proceeding as before we find
�cu0 þ aðu3Þ0 � bcu000 þ ru000 ¼ 0: ð4:2Þ
Integrating (4.2) with respect to n and neglecting constants of integration we find
�cuþ au3 þ ðr � bcÞu00 ¼ 0: ð4:3Þ
The constant of integration equals zero since the solitary wave solution and its derivatives equal zero as n! �1. Using (2.4)
we get
_XðnÞ ¼ YðnÞ; ð4:4Þ

_YðnÞ ¼ c
r � bc

XðnÞ � a
r � bc

X3ðnÞ; r � bc–0: ð4:5Þ
According to the first integral method, we suppose that XðnÞ and YðnÞ are nontrivial solutions of (4.4), (4.5), and
qðX;YÞ ¼

Pm
i¼0aiðXÞYi is an irreducible polynomial in the complex domain C½X;Y � such that
q½XðnÞ; YðnÞ� ¼
Xm

i¼0

aiðXÞYi ¼ 0; ð4:6Þ
where aiðXÞ,ði ¼ 0;1; . . . ;mÞ are polynomials of X and amðXÞ–0. Eq. (4.6) is called the first integral to (4.4), (4.5), due to the
Division Theorem, there exists a polynomial gðXÞ þ hðXÞY in the complex domain C½X;Y � such that
dq
dn
¼ oq

oX
oX
on
þ oq

oY
oY
on
;

¼ ½gðXÞ þ hðXÞY�
Xm

i¼0

aiðXÞYi
ð4:7Þ
In this example, we assume that m ¼ 1 in Eq. (4.6). Suppose that m ¼ 1, by equating the coefficients of Yiði ¼ 0;1;2Þ on both
sides of Eq. (4.7), we have
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_a1ðXÞ ¼ hðXÞa1ðXÞ; ð4:8Þ
_a0ðXÞ ¼ gðXÞ þ hðXÞa0ðXÞ; ð4:9Þ

a1ðXÞ _Y ¼ gðXÞa0ðXÞ ¼ a1ðXÞ
c

r � bc
X � a

r � bc
X3

� �
: ð4:10Þ
Since aiðXÞ ði ¼ 0;1Þ are polynomials, then from (4.8) we deduce that a1ðXÞ is constant and hðXÞ ¼ 0. For simplicity, take
a1ðXÞ ¼ 1. Balancing the degrees of gðXÞ and a0ðXÞ, we conclude that degðgðXÞÞ ¼ 1 only. Suppose that gðXÞ ¼ A1X þ B0,
and A1–0, then we find a0ðXÞ
a0ðXÞ ¼
A1

2
X2 þ B0X þ A0: ð4:11Þ
Substituting a0ðXÞ; a1ðXÞ and gðXÞ in Eq. (4.10) and setting all the coefficients of powers X to be zero, then we obtain a system
of nonlinear algebraic equations and by solving it, we obtain
A0 ¼ �
rA3

1

2ab
� A1

b
; B0 ¼ 0; c ¼ r

b
þ 2a

A2
1b
; ð4:12Þ
where A1 is free parameter.
Similarly, as for the case of (4.12), the exact solution is
uðx; y; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA2

1 þ 2a
ab

s
tanh

A1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA2

1 þ 2a
ab

s
ðnþ c0Þ

2
4

3
5; ð4:13Þ
where c0 is integration constant. If we take
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA2

1 þ 2a
ab

s
;

then the travelling wave solution to the ZK-MEW Eq. (4.1) can be written as
uðx; y; tÞ ¼ D tanh
DA1

2
xþ y� r

b
þ 2a

A2
1b

 !
t þ c0

 !" #
: ð4:15Þ
Comparing our results and Inc’s results [24] with Wazwaz’s results [25] then it can be seen that the results are same.

5. Conclusion

The first integral method was successfully used to establish travelling wave solutions. Many well known nonlinear wave
equations were handled by this method. The performance of this method is reliable and effective and gives more solutions.
This method has more advantages: it is direct and concise. The availability of computer systems like Maple facilitates the
tedious algebraic calculations. The method which we have proposed in this letter is also a standard, direct and computeriz-
able method, which allows us to solve complicated and tedious algebraic calculation.
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