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ABSTRACT

In this work, we investigate the topological construction of BGG-type operators, giying details about comp­
lex orientable theories, Becker-Gottlieb transfer and a formula of Brumfiel-Madsen.We generalize the BGG opera­
tors on the Morava K-theory and the others Fp generalized cohomology theories.
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GENELLEŞTiRiLMiş KOHOMOLOJi KURAMLARI,
BRUMFIEL-MADSEN FORMÜLÜ VE BGG-Tipi OPERATÖRLERiN

TOPOLOJiK iNŞASı

ÖZ

Bu çalışmada, kompleks yönlendirelebilinir kuramlar, Brumfiel-Madsen formülü ve Becker-Gottlieb dönüşü­

mü hakkındaki detayları vererek, BGG- tipi operatörlerin topolojik inşasını araştırıyoruz.BGG operatörlerini, Mo­
raya K-kuramı ve diğer Fp-genelleştirilmiş kohomoloji kuramlarına genelleştiriyoruz.

Anahtar Kelimeler: GenelleştirilmişKohomoloji Kuramları, BGG operatörleri.

1. INTRODUCTION
In this work, we will discuss the generalized com­

plex-oriented cohomology theories of the flag space
G/B, and the classical BGG and Kac operators will be
constructed topologically using the transfer map for
compact fibre bundles. Also we will generalize the
BGG operators on the Morava K-theories.

In order to do this, in the first seetion we will give
some topological notations.

In the second section, we will discuss the Becker­
Gottlieb map and transfer map for a fiber bundle
1t :E~B with the fiber F, which is a compact differen­
tiable G-manifold for a compact Lie group G.

In the third section, we will examine the Brumfiel­
Madsen formula for the transfer map.

In the last section, we will give the main result of
this work. Note that these results grew out a chapter of
the author's thesis (Özel, 1998).

2. TOPOlOGICAl PRELlMINARIES
The general reference for this seetion is (Adams,

1974).

2.1. Generalities on Generalized Cohomology.

A generalized cohomology theory h" O is a con­
travariant functor from topological spaces to graded
abelian groups which satisfies all the Eilenberg­
Steenrod axioms except the dimension axiom. That is,
the coefficients h" =h*(pt) need not be concentrated in
a single degree. We will always assume that h" is multi­
plicative, and that the associated ring structure is com­
mutative in the graded sense. Then for a topological
space X, h*(X) is a h" -module. The first example is

ordinary cohomology with coefficients in lL.

We take Hi(X) = Hi (X,7L.) = IX,K (lL,i)) where
K ( lL,i) is an Eilenberg Maclane space, and IX, Yı
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denotes homotopy classes of based maps from X to Y
for X and Y topological spaces with based points.

For a generalized theory h'(), there is a sequence
which computes h*(X) in terms of H*(X;h*). This spec­
tral sequence is called the Ativah-Hirtebruch spectra/
sequeııce, and details can be found in (Adams, 1974).

Theorem 2.1. There is a spectra/ sequeııce witlı Eı

term HP(X. M(pt)) ~ hp+lj (X). The differeııtial dr is of

bi-degree (r, J - rj.

Corollary 2.2. Suppose that X has 110 odd dimen­
sional cells and M(pt) = Ofor q odd. Tlıeıı the Ariyalı

Hirzebruclı spectral seqııeııce collapses at the Eı term.

Now we define reduced cohomology. Let i: pt ~X
be the inclusion of apoint and 1t :X~pt be the collaps­
ing map. Then 1t o i = id, so i'o 1t*= id on h'(pt), Let
h''(X) = ker i" be the reduced cohomology of X. Then,
as a h"-module,

2.2. Classifying Spaces.

In this section, we give some facts about the con­
struction of universal bundles and Cıassifying spaces of
groups. The general reference for this sections is
(Husemoller, 1975). Let G be a compact Lie group.
There is a universal space EG with a free right G-action
and (1ti)(EG) = Ofor all i >0. Moreover, EG is alimit of

Stiefel manifolds with the inductive limit topology. For
example, for G = Um), the unitary group,

EU (n) = Jim Vn (C" + ın),

m~OO

where

Vn(Cn+ın)= U(n+m).
U(m)

is a Stiefel manifold. The Cıassifying space BG is
defined as EG/G. For G = Um),

BG == Jim Gn (C" + ın),

m-4oo

the Grassmannian manifold of n-planes.

We have the universal bundle (EG,p, BG) where
EG! BG is the obvious projection map. Then BG has

the following universal property.

Theorem 2.3. Let PI!... B be a right Gıprincipal
bundle. Then there exist a unique (up to. homotopy)
classifying map [: B -7 BG such thaıfr (EG) == P as G­
principal bundles over B.
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As a consequence,

Corollary 1.4. BG is well-defined up to homotopy
and classifies induced vector bundles .

Let P! B be a right G-principal bundle. Then , if
F is a f inite dimensional representation of G,E = P x
GF is the associated vector bundle over B with structure

group G, where

E=PxGF=PxF/-

is the space obtained as the quotient of the product
space Px F by the realition

(x, y) - (xt, t-1y), t e G, x E P, YE F.

Theorem 2.5 Let E -7 B be a vector bundle asso­
ciated to the fibre F with structure group G. Tlıen ılıere

exists I: B -7 BG with f" (EG xG F) == E as vector bun­

dles over B.

Consider the special case of the Cıassifying space
for a complex line bundle. The appropriate structure
group is U(I), so the appropriate classifying space is
BU(I). By the above construction,

BU(l)= lim Cpın=CP"".

We know from (Husemoller, 1975) that

H* (BU (1), Z) =Z ix],

where Z ix] is the graded ring of polynomials in one
variable with coefficients in Z and degx = 2. Let

T= xl U(l)

be a torus. Then,

BT=~ BU(l),

and since H*(Bu (i), Z) is torsion-free, by the Kunneth
formula, we have

i
* 10\ *H (BT, Z) == \?$i H (BU (I), Z) == Z[xı, ..., xj],

i = i

where Z [x., ....xtl is the graded ring of polynomials in

i variables with coefficients in the ring Z.

2.3. Complex Orientable Cohomology Theories.

We follow (Adams, 1974) in this discussion.

Let i: CPI -7 CP""= BU(I) be the inclusion.

Deflnition 2.6. We say that the multiplicative
cohomology theory h*is complex oriented if there exists
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a class x E h'(CP~) such that i*(x) is a generator of

h'(Cp I ) over the ring h'(pı). Such a class x is cal/ed a
complex orientation.

h'(Cp I ) == h'(S2)is generated by one element over
h'(pt),

As an example, if h*= H*, then x can be taken as a

ring generator of H*(CPOO, Z),so x E H2(CP=, Z) .CPOO
has a universal line bundle LA given as follows. Let

e-be the one-dimensional representation of T = U(l)
given by

eA(e ie) . v = eiAe. v,

where AE Lie (T) is a fundamental weight. Then, for a
complex orientable theory h'with orientation given by
x, the first Chern class is given by x = cı (LA)' where

LAis the line bundle associated to eA. Let T be an 1­

dimensional torus,

Theorem 2.7. With the above notation, we have
isomorphisms of graded h*-algebras

h*(CP=)= h*(pt) IN],

h*(BT) == h*(pt) l[xı, ..., xıll.

h*(Cpn) == h*(pt) [lx]]/ [x" + 1),

h*(fr cpni)==h*(BT)/(Xyı+ı, ...,xr l+ I
) .

i = i

Now let rt :L~X be aline bundle over X. Then L
induces a Cıassifying map e :X~CPOO. Then the first
Chern class of L is cı (L) = e*(x). Next we define the top

Chern class of a vector bundle.

Definition 2.8. Let Jr :E~X be a vector bundle./f
there is a space Y and a map f: Y~X such that

/(X)~h*(Y) is injective and/CE) == tB Li. where Li are

line bundles on Y,f is cal/ed a splitting map for Jr.

From (Husemoller, 1975),

Theorem 2.9. If Jr :E~X is a vector bundle, there
exists a splitting map of Jr.

Then,

Definition 2.10. The top Chern class cn (E) where

dim E =n, whiclı also will be referred as the Euler class
x(E), is defined by the formula

f*(cn(E)) =n Ci (Li),
i

where f is a splitting map for Jr.
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2.4. Forrnal Group Laws.

Let F be a commutative ring with un it.

Definition 2.11. A formal group lawover F is a
power series Fix, y) over F that satisfies the followiııg

conditions:

l. Fıx, O) = F(O, x) = x,

2. Ftx, y) = F(y, x) ,

3. F(F(x. y),z) = Ftx, F(y, z)),

4.there exists a series i (x) such that Ftx, i(x)) = O

From (Ravenel, 1992), we have

Theorem 2.12. In complex oriented ıheory.for line
bundles L, M we have

where F is a formal group lawover the coefficient ring
h*.

Now, we will explain this. Aline bundle L over
space X is equivalent to a homotopy class of maps
fL: X~CPOO. Let L and M be two line bundles. Then we

have.

fLx fM : X~ CPOO x CPOO.

CPOO has an H-space structure m: CPOO x CPOO ~CPOO.

Then homotopy class of m o ( fLx fM) is then equiva-

lent to the tensor product L® M. There is an induced

map m- : h" (CPOO) ~h* (CPOO x CPOO). Since, h* (CPOO) ==

h* (pt) llxll and h* (CPOO x CPOO) == h* (pt) Ilx.. x211 rn"
has the form,

Then cı (L® M) = F(cı (L), cı (M». As an example, if

L and M are line bundles, we see in ordinary cohomol­
ogy H*( ) that

cı (L® M) = cı(L) + cı(M).

The complex cobordism MU* is the universal
cohomology thory with respect to push-forwards. From
(Adams,1974),

Theorem 2.13. The formal group law of MU* is
the Lazards universal formal group law.

-3. THE BECKER·GOTTLIEB MAP AND TRANSFER
The general reference for this seetion is (Becker

and Gottlieb, 1975).

Let 1t: E ~B be a fiber bundle with the fiber F,
which is a compact differentiable G-manifold for a
compact Lie group G. For any cohomology theory h*
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Let T(F) be the tangent bundle of F. Then we can iden­
tify T(F) $ N with the trivial bundle F x V. There is an
inclusion i: N~N $ T(F) == F x V and hence we have
an inclusion of Thom spaces i: FN~SV /\ P.

Definition 3.4. The transfer l' to apoint is the com­
position l' = i oc.

Let 1t :E~B be a fiber bundle associated to the
principle G-bundle p : P~B. Then the transfer to a
point gives a map

Id x 't: P x GSV ~ P x G(F X V)+.

When we collapse the seetion at 00 to apoint, which is
equivalent to taking Thom spaces, we get a map t: BÇ
~B1t* (ç) where ç is a vector bundle associated
to the representation V. Then there is a map

t /\ Id: Be. /\ B~ -7B1t* (c)/\ &" ,where ~ is the com-
plementary bundle of ç. If we restrict to the diagonal ~,
in B x B, we have transfer map

't: (rr ): r,mB+ ~ r,mP.

we have the induced map re": h*(B) ~h*(E). A transfer
map is a backward map h'(E) ~h*(B). Here, we will
give a technique for producing a transfer map.

Delinition 3.1. Let ç ~B be a vector bundle. Let
D(ç) = {x EÇ: i x i s; l} and S(ç) = {x E ç: i x i = l}
be the disk and sphere bundles respectively. Then, Bç =
D(ç) / S(ç) is called the Thom space of the vector bun­
die ç

Now we give the useful propositions from
(Husemoller, 1975),

Proposition 3.2. If ç ~B is a trivial n dimension­
al vector bundle, then the Thom space Bç= 1)1B+ ,
where B+ is the union of B witlı point.

Proposition 3.3. if ç and 1] are two vector bun­
dles over B, then B ç/\ B1] = B(ç $1]).

We define transfer for the map from the fiber F to
point. We can embed F equivariantly into a real G-rep­
resentation V of dimension r such that r» dim F. Let
N~F be the normal bundle of the embedding. By the
tubular neigbourhood theorem, we can identify the nor­
mal bundle N with a neigbourhood U of F by a differo­
morphism <po The is an associated Pontryagin-Thom
collapsing map c: Sy~F N ' where S, is the one point

compactification of V, defined by

{
base point of FN

c(x) =
<p (x)

if x (i; U,

fx E U.

4. THE BRUMFIEL·MADSEN FORMULA FOR
TRANSFER

The general reference for this seetion is(Brumfiel
and Madserı, 1976).

Let G be compact connected semi-simple Lie
group with maximal torus T. Let WG andWH be the
Weyl groups of G and H respectively. Suppose that
P ~B is a principal G-bundle. We have associated bun­
dles

1t1: E, = Px GG IT~B

1tı: Eı =Px G GIT~B.

Then there is a fibration 1t1~Eı with the fiber H IT.
Since the Weyl group WGacts on GIT, WG also acts on
Eı, The Weyl group WH of H also acts on Ejover Eı.
Thus, cosets ro E WG IWH define maps 1t O ro on Eı,

Theorem 4.1. We have,

* :+ ~ *nı o t(nı) = L ro o n
WE WafWH

Corollary 4.2. If we choose H = T, we get

nı*ot(nı)*= L W.

WE Wa

Although Brumfi el and Madsen were the first to
assert that Theorem 4.1 is true, there seems to be some
problem with the proof. Feshbach (1979), and Lewis,
et.a1. (1986) have given different proofs of Theorem
4.1. Since EG is the universal space for G, we have the
principle bundle EG ~BG.

Corollary 4.3. Let BT~BG be the fiber bundle
with the fiber GIT. Then

n * o t(n)* = L w
WE Wa

For a compact semi-simple Lie group G, any root
a defines a subgroub Ma=Ka . T such that the com­

plexified Lie algebra ma contains the root spaces ga and

g -a where Ka is introduced in (Kac, 1985).The induced

fiber bundle 1ti: BT~BMi has fiber Mi IT ==SUı i T ==

CPI. Then

Corollary 4.4.

n * o t (ni)' = ı + fa, '

if rai is the reflection to corresponding to the simple root

ai'

5. THE TRANSFER AND THE GYSIN
HOMOMORPHISM

Let ç : E ~X be a vector bundle and h" be the
complex oriented theory. Then there is the associated
Thom class u E h*(Xç). From (Dold, 1976), we have
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Theorem 5.1. The Thom map (/J: h*(X) ~h*(Xç)

given by cIJ(x) = u. Jt*(x) is an isomorphism.

Let n: E~B be a fiber bundle with compact
smooth f-dimensional fiber F. Suppose that the tangent
bundle TF ~F is a complex vector bundle. Then we
have the Gysin homomorphism rt, : hk (E)~hk-f (B).

Since the tangent bundle T(F) has a complex structure,
so does the tangents space along the fibers T ıı' Hence,

in the complex orientable theory h" ,Tıı has an Euler

Cıass, so x(Tıı) = cn (Tıı) .

Theorem 5.2. (see (Beeker and Gottlieb, 1975)
The transfer r (11: J". hk(E) ~hk(B). is given by

ı(11: )*(x) = 11:*(x. X<Tır)) .

Let a be the line bundle on BT assciated to the
character ea where a is a root. We want to determine
when its characteristic classes are not zero divisors. We
know that the characters ea do not usually generate the
representation ring R(T). Let Aı be the fundamental

weight corresponding to the simple root o, such that Aı

(hm ) = 1, where hm is the coroot. Then

Theorem 5.3. (see Husemoller, 1975) These eAl

generate the representation ring R(T).

By Theorem 1.7,

h*(BT) == h*(pt)l[cı (LAı) , ..o, cı (LAı) LI

where i is the rank of the compact Lie group G. Since
cı(LAi) are generators of h*(BT) , the cı(LA) are not
zero-divisors in h*(BT). This implies that cı(LAi) is not
nilpotent. We know that for any weigt i., E h*;A can be
written as

ı

le = L njlei,
i = 1

where ni is the multiplicity number. Using the formal

group law in h", the Euler class x(LA) of the line bun­

die LAin h'is equal to

ı

L nic! (LAİ) + higher order terms.
i = 1

If nı is not a zero-divisor in h'(pt), then x(LA)is not a

zero-divisor in h*(BT), If the weight i., is a root corre­
sponding to the adjoint representation, the multiplicity
numbers ni in the sum are the Cartan integers. By an

examination of the Cartan matrices, we have

Proposition 5.4. IfP > 3 is a prime, there is some
nisuch that p does not divide ni o

Proof. it follows from the classification of complex
semi-simple Lie algebras. If p divides ni for all i, then p

divides all entries in the Cartan matrix. By examination
of Cartan matrices, we see that p = 2 or p = 30
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Corollary 5.5. If h'(pı) has no 2-torsion and 3­

torsion, then the Euler class K(Lexi) is not a zero- di vi­
sor for any simple root ai o

Since every root is the image of a simple root by an
element of the Weyl group WG and the Weyl group acts

by automorphism on h*(BT), we have

Corollary 5.6. If lı'(pı) has no 2-torsion and 3­
torsion, then the Euler class x<La) is not a zero- divisor

for any root a .

Now we want to give the Brumfiel-Madsen formu­
la for the Gysin map of the fibration n: BT ~BG with
the fiber Gff.

We need a comlex structure on Gffo We know that
the smooth manifold GIT is diffeomorphic to the com­
plexified space GdB where B is a Borel group. Then

we can determine the tangent bundle of the fiber GdBo

The tangent bundle T(GdB) is isomorphic to G xT g/b,

where g is the complexified Lie algebra of G and b is
the Borel subalgebra of g. Using the adjoint representa­
tion ofT, we have

UE.ô.+

where L'l+ is the set of positive roots corresponding to B.
Thus

g/b= E9 g-a.
ae.6.+

Therefore the tangent bundle along the fiber Gff is

Tıı: = EG XT g/b == E9 La,

where L_a is as above. We know that

X"(Tıı:)=n cı(La},
<J.e.6.+

where il is the cup product in any complex orientable

theory h*. By Theorem 5.2, we have
n*o 't (n )* (x )= n* o n*(x .. x(Tn»

for x E h''(B'T). Since X(TIt) is a product of the non­
zero divisors in h*(BT), we nave

Theorem 5.7. (see (Bressler and Evens, 1990»
For x E h*(BT),

n' on.(x)= ') ro (_x_) ,
(J)~ Ilx(L-a)

here the right hand side is in a localization

h' (B1) [_1_] .
nx(La)
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But since the left hand side preserves the subring
h*(BT), it may be regarded as a identity on h*(BT),

Corollary 5.8. If x<La) is a non-zere divisor, for

the fibration ni : BT ~BMiwith the fiber M/T,

Di(x)= n; * o n;*(x) = (i + n) (_X_).
A{La)

Let h'be the ordinary cohomology with complex
coefficients. From Chapter 1 of (Özel, 1998), we know

that there is an isomorphism 8: h"~H2(BT, c) given

by A~x(Lt) , where h" is the dual Cartan subalgebra of

semi-simple Lie algebra.

The isomorphism 8extends to an inclusion of the

symmetric algebra R = S(h*) into H*(BT,C). Then

H*(BT,C) == CIA], ... , Ad

under the identification x(LAi) = Aj. Bernstein et.al.

(1973) introduced certain operators

where rj is the simp1e reflection associated to the simp1e

root ai .

When G= Mj,

Corollary 5.9.

is just the classical BGG operator.

If we apply Theorem 4.7 to K-theory, for G = Mj,

the formula Dj = 1tt O 1tj* in K-theory gives the

Demazure operatoro Now we prove this. We map the
representation ring R(T) to K(BT) by mapping eı' to
(L(A»), the class of the line bundle defined by A. In K­
theory, we can take x(L) = [1] - [L), where (LI is the

class of the trivialline bundle. In the case where G =M j

wis rank one, Di is the Demazure operator. it has the

form

Dj= _1_. (1 - e'lXin).
1 - e'lXi

Now, we will apply this result to BP-theory and
Morava K-theory. In order to do this, we will give some
definitions.let F be a formal group lawover commuta­
tive ring with unit R.

Definition 5.10. For each n, the n-seriels [n] (x) of
F is given by

[1 i(x) =x,

[ni (x) = F(x, (n- 1i (x) for n > I,

[- ni (x) = i(lnl (xj).
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Of particular interest is the p-series, where p is a
prime. In characteristic p it always has leading term axs
where q = ph for some integer h. This leads to the fol­
lowing.

Definition 5.11. Let F(x, y) be aformal group law
over an Fp -algebra. If [p] (x) has the form

[P] (x) =ax Ph + higher terms

with a invertible, then we say that F has height h at
p.lj [p] (x) = Othen the 1ıeigt is infinity.

Suppose that h" is an Fp -algebra and the formal

group law has the heigt h. since the elements x= x(LA1)

E h*(BT) are non-zero divisors, Ipi (x) has the form

[p] (x) = axPh + higher terrns, (a is a unit.)

This lead us to mod p K-theory and the Morava K-the­
ories. The Morava K-theory K(n)* for any prime p has
the heigt n. The reference for these cohomology theo­
ries is (Ravenel, 1992). By Proposition 4.4, we general­
ize Corollary 5.5 and 5.6.

Theorem 5.12. For any prime p > 3, in K(n)*(BT),

the Euler class X(La j) is not a zero divisor for any
simple root ai'

Theorem 5.13. For any prime p > 3, in K(n)*(BT),
the Euler class X(La j) is not a zero divisor for any
simple root a.

Let 1t :BT~BG is a fiber bundle with the fiber
Gff. By Theorem 5.13 and 5.7, we have

Theorem 5.14. For x E K(n)*(BT),

n' o n*(x) = ') (J) (_X-)) ,
~ ıısı.;

here the right hand side is in a localization

K(n)* (BT)[n>.{~,a)]'

Corollary 5.15. Let ni:BT~BMi be a fiber bundle

with thefiber M/T. For x E K(n)*(BT),

Di(x)= n/ o nj*(x) = (i + n) (_X_).
>.{La)

Of course, these results can be generalized to Fp ­

algebra h*which has a formal group law F with the
height n. In this section, so far we have concentrated
our attention on BT. Now, we will give some interesting
results about the flag variety Gff. Since the cohomolo­
gy of Gff vanishes in odd degrees, Corollary 2.2 gives

Corollary 5.16. Let h* be any complex oriented
cohomology theory. Then the Atiyah-Hirzebruch spec­
tral sequence for GIT collapses at the Eş-term.
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Let 1ti :BT~BMi ' Since Grr is aT-principal bun­

dle, there is a Cıassifying map e: GIT~BT. Similarly
there is a Cıassifying ei: G/Mi~BMi' The following
diagram is a cartesian square.

Let Ci = p* o Pi* .Then S* o Di = Ci oe" The following
theorem gives a topological description of the operator
Ci . From (Evens, 1988),

Theorem 5.17. If h'(pt} contains Z [_1_], then (J'
is surjective. W G

Delinition 5.18. For i = I, ..., I, let Di be the lin­

ear operatar associated to the simple root ai . Then we

say' that Di satisfy braid realitons if
\

(D D D )lI1ij = (D D LJ )lI1i)
i J i .i '.1 '

where mij is the number of factors in eaclı side for all

pairs i and j.

Now we will give our result about the infinite
dimensional flag variety. Let G be an affine Kac-Moody
group and K be the unitary form of G. For every simple
root (Xi' let Mi =Ki . T. We have a principal Mi -bundle

K ~K/Mi' and the associated fiber bundle KıT

~K/Miwith fiber M/T. Mirr is diffeomorpich to com­

plex projective space CPI.

Theorem 5.19. Let ni :KIT~KIMi be thefiber bun­

die witlı the compact fiber Cl'!and F be a commulative
ring ith unit. For x E H*(KIT, F),

Oi(X)= n/ o ni, (x) = - (l + r;) (L) ,
Er,

here the right hand side is in the localization

H* (Bn = [ ( )]. In fact o, is the Kac operator
IlX La

whiclı was introduced in (Kac, 1985).

Proof. By the Burmfiel-Madsen formula and Theorem
4.2, we have the fallowing identiy.

, * * ( )1ti o t (1ti) (x)= 1ti o 1ti' '" (-Xi) . X = (l + rı) (x) ,

where ri is the simple reflection associated to (Xi and X,
is the fundamental weight corresponding to the simple
root (Xi . Let x E H*(Krr, F). We know from (Konstant
and Kumar, 1986) that \jf(Xi ) = Eri where \jf: S(h*)
~H*(Krr, F). In H''(KrT, F), we know that the element
eri is a non zero-divisor, so we can define the local ring
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H* (Krr , F) [E~i] .

Then, we have the folloving identity in the local ring

H' (Krr , F) [E~i] ,

1ti * o 1ti'(.\) =- (l + rı) (ı) .
Efı

Since the left hand side of the identity is an element of
H'(Kr'l', F), we are done.

We know from (Kac, i 985) that the Kac operators
statisfy braid relations for all affine Kac-Moody group.
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