o Dbty

‘)'mmﬂ"

ARASTIRMA MAKALESI/RESEARCH ARTICLE

2o 'ﬁ"z ANADOLU UNIVERSITESI BILIM VE TEKNOLOJI DERGISI 0
ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY
% j Cilt/Vol.:1 - Sayi/No: 1 : 33-40 (2000) 0

THE GENERALIZED COHOMOLOGY THEORIES,
BRUMFIEL-MADSEN FORMULA AND TOPOLOGICAL
CONSTRUCTION OF BGG-TYPE OPERATORS

Cenap OZEL!

ABSTRACT

In this work, we investigate the topological construction of BGG-type operators, giving details about comp-
lex orientable theories, Becker-Gottlieb transfer and a formula of Brumfiel-Madsen.We generalize the BGG opera-
tors on the Morava K-theory and the others F), generalized cohomology theories.
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GENELLESTIRILMIS KOHOMOLOJi KURAMLARI,
BRUMFIEL-MADSEN FORMULU VE BGG-TiPi OPERATORLERIN
TOPOLOJIK INSASI

Bu ¢aligmada, kompleks yonlendirelebilinir kuramlar, Brumfiel-Madsen formiilii ve Becker-Gottlieb doniisii-
mii hakkindaki detaylar1 vererek, BGG- tipi operatorlerin topolojik insasini arastiriyoruz.BGG operatorierini, Mo-
rava K-kurami ve diger F-genellestirilmis kohomoloji kuramlarina genellegtiriyoruz.

Anahtar Kelimeler : Genellestirilmis Kohomoloji Kuramlari, BGG operatorleri.

1. INTRODUCTION

In this work, we will discuss the generalized com-
plex-oriented cohomology theories of the flag space
G/B, and the classical BGG and Kac operators will be
constructed topologically using the transfer map for
compact fibre bundles. Also we will generalize the
BGG operators on the Morava K-theories.

In order to do this, in the first section we will give
some topological notations.

In the second section, we will discuss the Becker-
Gottlieb map and transfer map for a fiber bundle
7 :E—B with the fiber F, which is a compact differen-
tiable G-manifold for a compact Lie group G.

In the third section, we will examine the Brumfiel-
Madsen formula for the transfer map.

In the last section, we will give the main result of
this work. Note that these results grew out a chapter of
the author’s thesis (Ozel, 1998).

2, TOPOLOGICAL PRELIMINARIES

The general reference for this section is (Adams,
1974).

2.1. Generalities on Generalized Cohomology.

A generalized cohomology theory h* () is a con-
travariant functor from topological spaces to graded
abelian groups which satisfies all the Eilenberg-
Steenrod axioms except the dimension axiom. That is,
the coefficients h* = h*(pt) need not be concentrated in
a single degree. We will always assume that h* is multi-
plicative, and that the associated ring structure is com-
mutative in the graded sense. Then for a topological
space X, h*(X) is a h* -module. The first example is
ordinary cohomology with coefficients in Z.

We take H(X) = HI(X,Z ) = [X K (Z,)] where
K ( Z,) is an Eilenberg Maclane space, and [X, Y|
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denotes homotopy classes of based maps from X to Y
for X and Y topological spaces with based points.

For a generalized theory h*(), there is a sequence
which computes h*(X) in terms of H*(X;h*). This spec-
tral sequence is called the Arivahi-Hirzebruch spectral
sequence, and details can be found in (Adams, 1974).

Theorem 2.1. There is a spectral sequence with E,

term HP(X, hd(pt)) = hr+d (X). The differential d, is of
bi-degree (r, I - r).

Corollary 2.2. Suppose that X has no odd dimen-
sional cells and hi(pt) = O for q odd. Then the Ativah
Hirzebruch spectral sequence collapses at the E, term.

Now we define reduced cohomology. Let i: pt »X
be the inclusion of a point and © :X—pt be the collaps-
ing map. Then T o i = id, so i*o n*= id on h*(pt). Let
h*(X) = ker i* be the reduced cohomology of X. Then,
as a h*-module,

W 0=h00® h"

2.2. Classifying Spaces.

In this section, we give some facts about the con-
struction of universal bundles and classifying spaces of
groups. The general reference for this sections is
(Husemoller, 1975). Let G be a compact Lie group.
There is a universal space EG with a free right G-action
and (m;)(EG) = O for all i >0. Moreover, EG is a limit of
Stiefel manifolds with the inductive limit topology. For
example, for G = U(n), the unitary group,

EUM) = lim V,(C**™,
M) 00

where

Vy (CPH M) = Ul + m)
U(m)

is a Stiefel manifold. The classifying space BG is
defined as EG/G. For G = U(n),

BG= lim G,(C*"*™),
M=) 0O

the Grassmannian manifold of n-planes.

- We have the universal bundle (EG, p, BG) where
EGPY, BG is the obvious projection map. Then BG has
the following universal property.

Theorem 2.3. Let PL.B  be a right G-principal
bundle. Then there exist a unique (up to _homotopy)
classifying map f: B — BG such that f+ (EG) = P as G-
principal bundles over B.

Anadolu Universitesi Bilim ve Teknoloji Dergisi, 1 (1)
As a consequence,
Corollary 1.4. BG is well-defined up to homotopy

and classifies induced vector bundles.

Let P2 B be aright G-principal bundle. Then, if
Fis afinite dimensional representation of GE =P x
¢ F is the associated vector bundle over B with structure
group G, where

E=PxgF=PxF/~

is the space obtained as the quotient of the product
space Px F by the realition

(x,y) ~{(xt,t-ly),te G,xe P,ye F.

Theorem 2.5 Let E — B be a vector bundle asso-
ciated to the fibre F with structure group G. Then there
exists f: B — BG with f* (EG xg F) = E as vector bun-
dles over B.

Consider the special case of the classifying space
for a complex line bundle. The appropriate structure
group is U(1), so the appropriate classifying space is
BU(1). By the above construction,

BU(l)= lim CP™=CP™.
m—>y 0o

We know from (Husemoller, 1975) that
H* (BU (1),2)=Z |x],

where Z [x] is the graded ring of polynomials in one
variable with coefficients in Z and degx = 2. Let

T= H U

be a torus. Then,

BT = BU(1),
1=

and since H*(Bu (1), Z) is torsion-free, by the Kunneth
formula, we have

) 1
H' (BT, Z)= X) H* (BU (1), Z) = Z[xy, ..., xil,

i=1

where Z [x, ...,x;] is the graded ring of polynomials in
{ variables with coefficients in the ring Z.

2.3. Complex Orientable Cohomology Theories.
We follow (Adams, 1974) in this discussion.
Let i; CP! — CP>~= BU(1) be the inclusion,

Definition 2.6, We say that the multiplicative
cohomology theory h* is complex oriented if there exists
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a class x e k(CP™) such that i*(x) is a generator of

E*(Cpl) over the ring h*(pt). Such a class x is called a
complex orientation.

n#(CP!) = he(s?)is generated by one element over
h*(pt).

As an example, if h*= H", then x can be taken as a

ring generator of H*(CP=, Z) so x € HX(CP~, Z) .CP=
has a universal line bundle L, given as follows. Let

e*be the one-dimensional representation of T = U(1)
given by

eMei®) . v =eirl, y,
where A € Lie (T) is a fundamental weight. Then, for a

complex orientable theory h*with orientation given by
x, the first Chern class is given by x = ¢, (L;), where

L,is the line bundle associated to e*. Let T be an 1-
dimensional torus.

Theorem 2.7. With the above notation, we have
isomorphisms of graded h*-algebras
h(CP) = h"(py) [1x1l,
h(BT) = h"(pt) [[X1, ... xill,

n*(CP") = ho [Ix]1/ (x*+ 1),

}
h(]'[ CP"i)E W BT+, L xP Y.

i=1

Now let T :L—X be a line bundle over X. Then L
induces a classifying map 6 :X—CP=. Then the first
Chern class of Lis ¢;(L) = 6"(x). Next we define the top
Chern class of a vector bundle.

Definition 2.8. Let © :E—X be a vector bundle. If
there is a space Y and a map f: Y—X such that

SHUX)—=h*(Y) is injective and f(E) = @L,-, where L; are
line bundles on Y, f is called a splitting map for 7.
From (Husemolier, 1975),

Theorem 2.9. If n:E—X is a vector bundle, there
exists a splitting map of .

Then,

Definition 2.10. The top Chern class c, (E) where

dim E = n, which also will be referred as the Euler class
x(E), is defined by the formula

f*(cn(E))= ﬂ cl (Li),

i

where f is a splitting map for 7.
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2.4, Formal Group Laws.
Let F be a commutative ring with unit.

Definition 2.11. A formal group law over F is a

power series F(x, y) over F that satisfies the following
conditions:

1.F(x,0)=F(0,x)=ux,

2.F(x.y)=F(y.x),

3. F(F(x,y),z) = F(x, F(y, 2)),

4.there exists a series i (x) such that F(x, i(x)) = 0
From (Ravenel, 1992), we have

Theorem 2.12. In complex oriented theory, for line
bundles L, M we have

c; (L& M) = F(c/(L), c(M))
where F is a formal group law over the coefficient ring
h*.

Now, we will explain this. A line bundle L over
space X is equivalent to a homotopy class of maps
f;: X—CP=. Let L.and M be two line bundles. Then we
have.

fix fp: X— CPex CP~.
CP= has an H-space structure m: CP= x CP~ —»CP=.
Then homotopy class of m o ( f| x fy,) is then equiva-

lent to the tensor product L& M. There is an induced
map m* : h* (CP=) —h* (CP= x CP~). Since, h* (CP~) =
h* (pt) [[x]} and h* (CP=x CP=) = h* (pt) [[xy, X,1] m"
has the form,

m* (x)= z ayx'xy) = F (x1, x2).

Then ¢, (L& M) = F(c; (L), c; (M)). As an example, if
L and M are line bundles, we see in ordinary cohomol-
ogy H*( ) that

c; (L® M) = ¢ (L) + ¢,(M).

The complex cobordism MU#* is the universal
cohomology thory with respect to push-forwards. From
(Adams, 1974),

Theorem 2.13. The formal group law of MU* is
the Lazard’s universal formal group law.

3. THE BECKER-GOTTLIEB MAP AND TRANSFER

The general reference for this section is (Becker
and Gottlieb, 1975).

Let m: E —B be a fiber bundle with the fiber F,
which is a compact differentiable G-manifold for a
compact Lie group G. For any cohemology theory h*
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we have the induced map ©*: h*(B) —h*(E). A transfer
map is a backward map h*(E) —h*(B). Here, we will
give a technique for producing a transfer map.
Definition 3.1. Let £ —B be a vector bundle. Let
Dil)={xe:Ixl<}and S(§) ={xe & x| =1}
be the disk and sphere bundles respectively. Then, BE =

D(&) / S(&) is called the Thom space of the vector bun-
dle {.

Now we give the useful propositions from
(Husemoller, 1975),

Proposition 3.2. If & —B is a trivial n dimension-
al vector bundle, then the Thom space BE = 3B+,
where B is the union of B with point.

Proposition 3.3. If £ and 1 are two. vector bun-
dles over B, then B & A Bn = B(E @ 1).

We define transfer for the map from the fiber F to
point. We can embed F equivariantly into a real G-rep-
resentation V of dimension r such that r >> dim F. Let
N—F be the normal bundle of the embedding. By the
tubular neigbourhood theorem, we can identify the nor-
mal bundle N with a neigbourhood U of F by a differo-
morphism ¢. The is an associated Pontryagin-Thom
collapsing map c: S,—F  , where S, is the one point
compactification of V, defined by

base point of Fyy ifxe U,

c(x)=

¢ (x) fxe U.

Let T(F) be the tangent bundle of F. Then we can iden-
tify T(F) @ N with the trivial bundle F x V. There is an
inclusion i N—N @ T(F) = F x V and hence we have
an inclusion of Thom spaces i: Fy—Sy A F+.

Definition 3.4. The transfer Tto a point is the com-
position T=1i0c.

Let © :E—B be a fiber bundle associated to the
principle G-bundle p : P—B. Then the transfer to a
point gives a map

IdXxT:PxgSy = Pxg(Fx V)

When we collapse the section at oo to a point, which is
equivalent to taking Thom spaces, we get a map t: BC
—Br* (&) where & is a vector bundle associated
to the representation V. Then there is a map

t Ald: BE ABE —»B1" (E)A BE ,where & is the com-
plementary bundle of &. If we restrict to the diagonal A,
in B x B, we have transfer map

T (m): ZmB+ — ZmE*+,

£
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4. THE BRUMFIEL-MADSEN FORMULA FOR
TRANSFER

The general reference for this section is(Brumfiel
and Madsen, 1976).

Let G be compact connected semi-simple Lie
group with maximal torus T. Let W; andWy be the
Weyl groups of G and H respectively. Suppose that
P —B is a principal G-bundle. We have associated bun-
dles

Ty EIZPXGG/T‘—)B
Then there is a fibration ;—E, with the fiber H /T.
Since the Weyl group W acts on G /T, W; also acts on

E,. The Weyl group Wy of H also acts on E,over E,.
Thus, cosets w € Wg /W define maps t 0 won E;.

Theorem 4.1. We have,

motm)*= Y womt.
we Wg/Wy

Corollary 4.2. If we choose H = T, we get

Tfotn) = Y e
we Wg

Although Brumfiel and Madsen were the first to
assert that Theorem 4.1 is true, there seems to be some
problem with the proof. Feshbach (1979), and Lewis,
et.al. (1986) have given different proofs of Theorem
4.1. Since EG is the universal space for G, we have the
principle bundle EG —BG.

Corollary 4.3. Let BT—BG be the fiber bundle
with the fiber G/T. Then

*—-

" o 1(R) ®

we Wg

For a compact semi-simpie Lie group G, any root
o defines a subgroub M= K, . T such that the com-

plexified Lie algebra m, contains the root spaces g, and
g _o Where K, is introduced in (Kac, 1985).The induced
fiber bundle &, : BT-BM, has fiber M; / T =SU, /T =
CP!L. Then

Corollary 44.

nrot(m) =1+,

if r;is the reflection to corresponding to the simple root
o .

5. THE TRANSFER AND THE GYSIN
HOMOMORPHISM

Let &€ : E —>X be a vector bundle and h* be the
complex oriented theory. Then there is the associated
Thom class u € h*(X&). From (Dold, 1976), we have



Anadolu Universty Journal of Science and Technology, I (1)

Theorem 5.1. The Thom map ®: h*(X) —-h*(XE)
given by d(x) = u. T'(x) is an isomorphism.

Let m: E—B be a fiber bundle with compact
smooth f-dimensional fiber F. Suppose that the tangent
bundle TF —F is a complex vector bundle. Then we
have the Gysin homomorphism 7« : hk (E)—hkf (B).
Since the tangent bundle T(F) has a complex structure,
so does the tangents space along the fibers T,. Hence,
in the complex orientable theory h* T, has an Euler
class, so x(T,) = ¢, (Tp).

Theorem 5.2. (see (Becker and Gottlieb, 1975)
The transfer T(x )*: W (E) —hXB).is given by

AR ) (x) = Tdx. ((Ty).

Let o be the line bundle on BT assciated to the
character e* where o is a root. We want to determine
when its characteristic classes are not zero divisors. We
know that the characters e® do not usually generate the
representation ring R(T). Let A, be the fundamental
weight corresponding to the simple root ¢ such that A,
(h,, ) = 1, where h,, is the coroot. Then

Theorem 5.3. (see Husemoller, 1975) These eM
generate the representation ring R(T).

By Theorem 1.7,

h*(BT) = h*(po)llcy(Lyy) » -p (L]l
where | is the rank of the compact Lie group G. Since
c(L;;) are generators of h*(BT) , the ¢ (L,;) are not
zero-divisors in h*(BT). This implies that ¢;(L,;) is not
nilpotent. We know that for any weigt A € h* A can be
written as

’ |
A= z ni}\,‘, s
i<
where n, is the multiplicity number. Using the formal
group law in h*, the Euler class x(L,) of the line bun-
dle L,in h*is equal to

1
> nicy (Lai) + higher order terms.

i=1
If n, is not a zero-divisor in h*(pt), then y(L;)is not a

zero-divisor in h*(BT), If the weight A is a root corre-
sponding to the adjoint representation, the multiplicity
numbers n; in the sum are the Cartan integers. By an

examination of the Cartan matrices, we have

Proposition 5.4. If p > 3 is a prime, there is some
n; such that p does not divide n; .

Proof. It follows from the classification of complex
semi-simple Lie algebras. If p divides n; for all i, then p

divides all entries in the Cartan matrix. By examination
of Cartan matrices, we sec that p=2 or p = 3.
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Corollary 5.5. If h*(pt) has no 2-torsion and 3-
torsion, then the Euler class X (L o) is not a zero- divi-
sor for any simple root «; .

Since every root is the image of a simple root by an
element of the Weyl group W and the Weyl group acts

by automorphism on h*(BT), we have

Corollary 5.6. If h*(pt) has no 2-torsion and 3-
torsion, then the Euler class y(L,) is not a zero- divisor

Jor any root «.

Now we want to give the Brumfiel-Madsen formu-
la for the Gysin map of the fibration =: BT —BG with
the fiber G/T.

We need a comlex structure on G/T. We know that
the smooth manifold G/T is diffeomorphic to the com-
plexified space G/B where B is a Borel group. Then

we can determine the tangent bundle of the fiber G/B.
The tangent bundle T(G/B) is isomorphic to G xy g/b,

where g is the complexified Lie algebra of G and b is
the Borel subalgebra of g. Using the adjoint representa-
tion of T, we have

g=b0 @ ga

aeA*

where A* is the set of positive roots corresponding to B.
Thus

g/b=@ ga.

acAt

Therefore the tangent bundle along the fiber G/T is

Ti=EGxrgh=@ La,

acAt

where L_, is as above. We know that

X(1)=TT @ (La).

aeAt

where I T is the cup product in any complex orientable
theory h*. By Theorem 5.2, we have
0 T (R )" (X )= T 0 Tu(X.. x(Ty))

for x € h*(BT). Since x(T) is a product of the non-
zero divisors in h*(BT), we have

Theorem 5.7. (see (Bressler and Evens, 1990))
For x € h*(BT),

T 0 me(x) = Zwm(n E‘L )) ,
we X\ Lt

here the right hand side is in a localization
h* (BT){ 1 }
L)
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But since the left hand side preserves the subring
h*(BT), it may be regarded as a identity on h*(BT),

Corollary 58. If (L_,) is a non-zero divisor, for
the fibration m, : BT —BM, with the fiber M/T,

Div= 7" 0 aw(x) = (1 + 1) ( x ) :

)\(L~a)

Let h*be the ordinary cohomology with complex
coefficients. From Chapter 1 of (Ozel, 1998), we know

that there is an isomorphism ©: h*>H(BT, O) given
by A—>x(L,) , where h* is the dual Cartan subalgebra of
semi-simple Lie algebra.

The isomorphism Oextends to an inclusion of the
symmetric algebra R = S(h*) into H*(BT,C). Then

H*BT.C) =ClA,, ..., |

under the identification yx(L,;) = A;. Bernstein et.al.
(1973) introduced certain operators
i (r-1): H* (BT) —H"? (BT)

where r; is the simple reflection associated to the simple
root o; .

When G = M;
Corollary 5.9.
D=L (-
o (r l)

is just the classical BGG operator.

If we apply Theorem 4.7 to K-theory, for G = M;,
the formula D; = m" o wm« in K-theory gives the
Demazure operator. Now we prove this. We map the
representation ring R(T) to K(BT) by mapping e* to
[L(A)], the class of the line bundle defined by A. In K-
theory, we can take y(L) = [1] - [L}], where [1] is the
class of the trivial line bundle. In the case where G =M,
wis rank one, D, is the Demazure operator. It has the
form

D; = I

1-e*
Now, we will apply this result to BP-theory and
Morava K-theory. In order to do this, we will give some

definitions. let F be a formal group law over commuta-
tive ring with unit R.

(1-e%g).

Definition 5.10. For each n, the n-seriels [n] (x) of
F is given by

[1}(x) = x,
[n] x) = F(x, [n- 1} (x)) forn> 1,
[- n] (x) = i(In] (x)).
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Of particular interest is the p-series, where p is a
prime. In characteristic p it always has leading term axd
where q = ph for some integer h. This leads to the fol-
lowing.

Definition 5.11. Ler F(x, y) be a formal group law
over an F, -algebra. If [p] (x) has the form

[p] (x) = axP" + higher terms

with a invertible, then we say that F hus height h at
p-If [p] (x) = O then the heigt is infinity.

Suppose that h* is an F, -algebra and the formal
group law has the heigt h. since the elements x= y(L;,)
€ h*(BT) are non-zero divisors, [p} (x) has the form

[p] (x) = axP" + higher terms, (a is a unit.)

This lead us to mod p K-theory and the Morava K-the-
ories. The Morava K-theory K(n)* for any prime p has
the heigt n. The reference for these cohomology theo-
ries is (Ravenel, 1992). By Proposition 4.4, we general-
ize Corollary 5.5 and 5.6.

Theorem 5.12. For any prime p > 3, in K(n)*(BT),
the Euler class X(Lq,)
simple root o;.

is not a zero divisor for any

Theorem 5.13. For any prime p > 3, in K(n)*(BT),
the Euler class X(Lq,)
simple root «.

is not a zero divisor for any

Let © :BT—BG is a fiber bundle with the fiber
G/T. By Theorem 5.13 and 5.7, we have

Theorem»5.14. For x € K(n)*(BT),
T o m(x) = wgw w (I'IA(XL.a)) ,
here the right hand side is in a localization
K (ny (BT) [n X(IL_Q)} .
Corollary 5.15. Let n,:BT—BM, be a fiber bundle

‘with the fiber MJ/T. For x &€ K(n)*(BT),

Dix)= 7" 0 mix(x) = (1 + 1)) ( X )

HL)

Of course, these results can be generalized to Fp -

algebra h*which has a formal group law F with the
height n. In this section, so far we have concentrated
our attention on BT. Now, we will give some interesting
results about the flag variety G/T. Since the cohomolo-
gy of G/T vanishes in odd degrees, Corollary 2.2 gives

Corollary 5.16. Let h* be any complex oriented
cohomology theory. Then the Atiyah-Hirzebruch spec-
tral sequence for G/T collapses at the Ej-term.
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Let w, :BT—BM,; . Since G/T is a T-principal bun-

dle, there is a classifying map 0: G/T—BT. Similarly
there is a classifying 6;; G/M;—»BM,;. The following
diagram is a cartesian square.

or—% 5 BT

bk

G/Mi_._i_.> BM,

Let C; = p" 0 p;« .Then 6" 0 D, = C; 06" .The following
theorem gives a topological description of the operator
C, . From (Evens, 1988),

Theorem 5.17. If h*(pt) contains Z [L} , then 6"
is surjective. W

Definition 5.18. For i =1, ..., I, let D; be the lin-
ear operator associated to the simple root o; . Then we
say that D, satisfy braid realitons if

(D, Dj D, ymi = (D/ Di\‘Dj i,
where m; is the number of factors in each side for all
pairs i and j.

Now we will give our result about the infinite
dimensional flag variety. Let G be an affine Kac-Moody
group and K be the unitary form of G. For every simple
root ¢, let M; = K; . T. We have a principal M; -bundle
K —K/M;, and the associated fiber bundle K/T
—-K/M;with fiber My/T. M,/T is diffeomorpich to com-
plex projective space CP!.

Theorem 5.19. Let 7, :K/T—K/M, be the fiber bun-

dle with the compact fiber CPland F be a commulative
ring ith unit. For x € HY(K/T, F),

0= 7" 0 M @) = - (1 + 1) (—X—)
g
here the right hand side is in the localization
H'(BT) = [ !
My(L-o)
which was introduced in (Kac, 1985).

} - In fact O; is the Kac operator

Proof. By the Burmfiel-Madsen formula and Theorem
4.2, we have the fallowing identiy.

W oT(m) (=7 o (WX . x)=(1+1)(x),

where r; is the simple reflection associated to o; and X;
is the fundamental weight corresponding to the simple
root o; . Let x € H"(K/T, F). We know from (Konstant
and Kumar, 1986) that y(yx; ) = € where y: S(h")
—-H*(K/T, F). In H(K/T, F), we know that the element
gl is a non zero-divisor, so we can define the local ring
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H' (KT, F) [L} ‘
eh

Then, we have the folloving identity in the local ring

H (KT, {L] ,
o
o mu(x) = - (1 + 1) (Lr) :

Since the left hand side of the identity is an element of
H*(K/T, F), we are done .

We know from (Kac, 1985) that the Kac operators
statisfy braid relations for all affine Kac-Moody group.
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