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Abstract
In this work we classify the irreducible SU(2) representations of Π1

�
S3\kn

�

where kn is an integer n tangle and as a result we have proved the following theorem:

Let n be an odd integer then R∗
�
Π1

�
S3\kn

��
/SO (3) is the disjoint union of n open

arcs where R∗
�
Π1

�
S3\kn

��
is the space of irreducible representations.
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1. Introduction

As it is known a knot in S3 is an embedding of S1 into S3 and the fundamental group of
its complement is one of the most important invariants of the knot. Especially after 1970,

following the works of Riley [5], Casson [1], Burde [3], the representation of Π1

(
S3\kn

)
has gained ever increasing importance, but the SU(2) representations of the knot groups
still defy classification. In this context we will characterize SU(2) representations of a
special class of knots and the result is given in the main theorem of the paper. To begin,
we give the main threads of the representation theory:

Let G be a group. We mean by an SU(2) representation of G is a homomorphism
from G into SU(2). Two important isomorphic Lie groups will be our main devices. One
is SU(2) which is

SU(2) =
{(

z w
−w z

)
∈M2 (C) | zz +ww = 1

}
.

The other is the group of unit quaternions defined as

H =
{
z + wj | z, w ∈ C , |z|2 + |w|2 = 1, wj = jw, j2 = −1

}
.
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The isomorphism between these groups is given by the obvious map:

H −→ SU(2)

z +wj −→
(

z w
−w z

)
.

If one defines i · j = k then it is possible to pass from the complex presentation to real
one, i.e. a quaternion can also be defined as:

H =
{
q0 + q1i+ q2j + q3k

∣∣ q0, q1, q2, q3 ∈ R, q2
0 + q2

1 + q2
2 + q2

3 = 1
}

which implies that S3, the unit sphere of R4, can be equipped with quaternions. From
now on we will be taking S3 with its quaternionic structure rather than SU(2) since the

geometric structure of S3 fits in an excellent way to this algebraic structure of quaternions.
One can obtain the polar form of a unit quaternion as follows:

Q = q0 + q1i + q2j + q3k

= q0 +
√
q2

1 + q2
2 + q2

3

[
1√

q2
1+q2

2+q2
3

(q1i+ q2j + q3k)
]

so ∃α ∈ [0, π] such that cosα = q0 and sinα =
√
q2

1 + q2
2 + q2

3 . If we identify the pure

imaginary part of a quaternion with an element of S2 as

q =
1√

q2
1 + q2

2 + q2
3

(q1, q2, q3)←→ 1√
q2

1 + q2
2 + q2

3

(q1i+ q2j + q3k) ,

then Q can be written as Q = cosα + q sinα where α ∈ [0, π] and q ∈ S2 . In this

expression we call α ∈ [0, π] as the argument of Q and q ∈ S2 as the pure imaginary pure
unit part of Q. It is quite clear that this polar expression is unique for each quaternions
but ∓1. Again as in the complex numbers we denote Q = cosα + q sinα = eαq . This
construction gives a geometric decomposition of S3 into 2-spheres parametrized by the
argument since the space of quaternions of a given argument is homeomorphic to S2. That
is why we employ the notation S2

α for the quaternions whose arguments is α.What is nice
is that these 2-spheres are precisely conjugacy classes of quaternions: i.e. two quaternion
Q1, Q2 are conjugate if and only if their real parts (so their arguments) coincide. That

is for two unit quaternions Q1 and Q2, ∃Q ∈ S3 such that Q1 = Q−1Q2Q if and only
if Q1 and Q2 has the same real part. Moreover, the geometry of the conjugation can be

exploited by using the Riemannian structure of S3 . Let Q1 = eαq1 and Q2 = eβq2 then

the quaternion Q−1
1 Q2Q1 = e−αq1eβq2eαq1 has the argument β and its pure imaginary
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unit part is obtained as the image of q2 by 2α right hand rotation about the axis [1, q1]
(the geodesic connecting 1 and q1).

Now let R (G) denote the set of S3 (or SU (2)) representations of G i.e.

R (G) =
{
φ
∣∣∣ φ : G

homomorphism−→ S3
}

S3 has various subgroups. An important class of subgroups can be defined as for q ∈ S2
π
2
,

S1
q = {cosα+ q sinα | α ∈ [0, 2π]} ,

which are called the Cartan subgroups of S3 and clearly are abelian and isomorphic to
S1 . There are S3 representations of G such that Im (G) ≤ S1

q for a suitable q ∈ S2
π
2
; we

call these representations as the reducible representations and denote the set by S (G)
i.e.

S (G) =
{
φ ∈ R (G)

∣∣ Im (φ) ≤ S1
q ≤ S3 for some q ∈ S2

π
2

}
.

Then we can define our prime object as

R∗ (G) = R (G)− S (G) ,

the set of irreducible representations. Behind the set structure, R (G) can also be turned
into a topological space provided that G is a topological group. Here we equip G with
the discrete topology then R (G) can be made a topological space by the compact-open
topology whose sub-base are the following subset of R (G):

HK,U = {φ ∈ R (G) | φ (K) ⊆ U } ,

where K is a compact subset of G ( in this case, a finite subset of G since G is a discrete

group) and U is an open subset of S3. So we can takeR (G) as a topological space, R∗ (G)
also a topological space with subspace topology. There is a natural action of SO (3) on

R (G). Remember that SO (3), the group of special orthogonal transformations of R3, is
homomorphic to the projective space i.e.

SO (3) = S3/ {∓1} = {[Q] | [Q] = {Q,−Q}}

then the action of SO(3) on R(G) is

SO (3) × R (G) −→ R (G)
[Q] , φ (g) −→ Qφ (g)Q−1,
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where g ∈ G. Obviously this action is free and restricts on R∗ (G), which means that

R̂ (G) = R∗ (G) /SO (3) is a manifold, a property we investigate throughout this paper.

1.1. The Space of SU(2) Representations of Π1

(
S3\kn

)
Let n be an odd integer and kn be an integer tangle whose plane projection is depicted in
Figure 1. Then the Wirtinger presentation of the fundamental group of its complement
in S3, G, can be read from the figure as follows:

G = 〈X1, X2, ..., Xn | R1, R2, ..., Rn〉 ,

where

R1 = XnXn−1X
−1
n X−1

1

R2 = X1XnX
−1
1 X−1

2

Ri = Xi−1Xi−2X
−1
i−1X

−1
i for i > 2

(1)

It is quite clear from the relations that any two generators of G are conjugate.
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Figure 1. Plane projection of integer n-tangle

Let us assume that we have a homomorphism

φ : G −→ S3.
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Since φ takes conjugate elements to conjugate elements then the images of the generators
are conjugate therefore for a fixed α ∈ (0, π) we can define

φ (Xi) = Yi = eαyi = cosα+ yi sinα,

i.e. images of the generators are on S2
α. Now we can study a configuration of the

generators on S2
α such that the images of at least two generators are distinct. Let us

suppose that there is a configuration of Y1, Y2, ..., Yn such that the conjugation relations
in S3are satisfied. If one looks at the imaginary parts of Y1, Y2, ..., Yn, since they are
conjugation relations, they must form a regular spherical n−gon as given in Figure 2.

Figure 2. Configuration of the pure imaginary unit parts of the generators on S2
π
2

.

Since the conjugation is rotation by 2α then d (yi, yi+1) = d (yi+1, yi+2) for all i ∈
{1, ..., n− 2}. Let ξ = y1+y2+...+yn

‖y1+y2+...+yn‖ . Then for all i, j ∈ {1, ..., n} ,

d (ξ, yi) = d (ξ, yj) ,

hence the triangles with vertices ξ, yi, yi+1 are isosceles and they all are congruent to each

other. We go on with this S2
π
2

picture given in Figure 3 by considering the polar line of

ξ. The lines connecting ξ and yi cut the polar circle of ξ at two points and we call the
intersection point closer to yi as yi. Obviously with a simple calculation we can see that

yi =
1√

1− 〈yi, ξ〉2
(yi − 〈yi, ξ〉 ξ) .

Because of the relations d (ξ, yi) = d (ξ, yi+1), we have d
(
yi, yi+1

)
= d

(
yi+1, yi+2

)
for all i’s.
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Figure 3. Lifting from S2
π
2

configuration to S2
α configuration.

Now a brief digression. Let us consider a particular representation called circle
representation or cyclic representation. We prefer to call it by circle representation in this
study. By a circle representation we mean a representation which takes all generators of
the knot group G into one of the line of S2

π
2
. Before going further we would like to give

an example of circle representation.
Let us consider the trefoil whose plane projection is depicted in Figure 4.

Figure 4. Plane projection of trefoil.

The group of the trefoil is

G =
〈
X1, X2, X3

∣∣ X1 = X3X2X
−1
3 , X2 = X1X3X

−1
1 , X3 = X2X1X

−1
2

〉
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It is trivial that the placement, depicted in Figure 5, on a line of S2
π
2

is a circle represen-

tation of the trefoil. For instance, we could take

y1 = i
y2 = i cos 2π

3 + j sin 2π
3

y3 = i cos 4π
3

+ j sin 4π
3

(2)

where yi is the image of Xi for i ∈ {1, 2, 3} .

Figure 5. Circle representation of the trefoil.

If we go back to our construction, y1, y2, ..., yn points are on the polar circle of ξ and

the relations d
(
yi, yi+1

)
= d

(
yi+1, yi+2

)
are satisfied for all i’s. Therefore the points{

y1, y2, ..., yn
}

form a circle representation of G, the group of n-tangle knot. Hence we

have proved the following lemma.

Lemma 1 Let kn be an integer n tangle where n is an positive odd integer and G denote
its fundamental group. If there exist an irreducible SU (2) representation of G then this
representation rises to give a circle representation.

Conversely, let us have a circle representation of G. Then we construct an SU (2)
representation from this circle representation. Assume that we have homomorphism

φ : G −→ S3

xi −→ yi,

where the images of the generators are placed on the same line of S2
π
2
. We call ξ one of

the poles of this line. Choose θ ∈
(
0, π2

)
and we denote the line connecting ξ and yi by
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Γi. If we consider the point

yi = yi cos θ + ξ sin θ

then d
(
yi, yi

)
= θ and d (yi, ξ) = π

2 − θ = β. Since φ is a circle representation then

d
(
yi, yi+1

)
= d

(
yi+1, yi+2

)
for all i’s. Hence the angle between the lines

[
ξ, yi

]
and[

ξ, yi+1

]
equals to the angle between the lines

[
ξ, yi+1

]
and

[
ξ, yi+2

]
, we denote this

angle ϕ. Obviously for all i’s

d (yi, yi+1) = d (yi+1, yi+2)

and the isosceles triangles with vertices ξ, yi, yi+1 and ξ, yi+1, yi+2 are congruent. Let

α be the vertex angle of this isosceles triangle, then α > π−ϕ
2 since the sum of interior

angles of a spherical triangle exceeds π. By cosine rule we get

cosα =
〈ξ, yi+1〉 − 〈yi, yi+1〉 〈yiξ〉√
1− 〈yi, yi+1〉2

√
1− 〈yi, ξ〉2

, (3)

and by considering

yi = yi cos θ + ξ sin θ

and 〈
yi, yi+1

〉
= cosϕ

then Eqn. (3) transforms into

cosα =
sin θ
√

1− cosϕ√
2 + cos2 θ (cosϕ− 1)

and

sinα =
√

1 + cosϕ√
2 + cos2 θ (cosϕ− 1)

.

Therefore the points eαyi , eαy2 ,...,eαyn give an irreducible SU (2) representation for

α > π−ϕ
2

. If we substitute θ with −θ then we get representations for α < π+ϕ
2

. Hence a

circle representation lifts into an SU (2) representation for π−ϕ
2 < α < π+ϕ

2 .

106



UYGUR

Lets go back the trefoil example. If we consider the placement which is given in Eqn.
(2) and an angle θ such that 0 < θ < π

2 , we have

cosα =
√

3 sin θ√
4− 3 cos2 θ

, sinα =
1√

4− 3 cos2 θ

and

y1 = i cos θ + k sin θ
y2 = 1

2
cos θ

(
−i +

√
3j
)

+ k sin θ
y3 = 1

2 cos θ
(
−i−

√
3j
)

+ k sin θ.

Then the points eαy1 , eαy2 , eαy3 give an irreducible SU(2) representation of the group of
trefoil.

Now to classify the irreducible SU(2) representations of G, the group of n-tangle, we
need to know the number of distinct irreducible circle representations of the knot group
and under which conditions the knot group admits an irreducible representation.

Lemma 2 Let k be a knot in S3 with group G, then G admits an irreducible circle
representation if and only if the determinant of the knot is not 1 [2].

Notice that the determinant of a knot is defined as |∆ (−1)| where ∆ (−1) is the
Alexander polynomial of the knot evaluated at -1 [6].

On the other hand,
∑

2, the 2-fold branched covering of S3 branched over k, has first

homologyH1 (
∑

2) which is a finite abelian group and of order |∆ (−1)| [6]. Consequently,

if |∆ (−1)| = 1 then this double cover will be a homology 3-sphere.

Theorem 3 Let l be a link in S3 with group Ġ. Then G admits an irreducible circle
representation if and only if the double branched cover of S3 branched over l is not
a homology 3-sphere. Furthermore, the number of inequivalent circle representatins is∏
ai,i6=∓1

[ai,i
2

]
where

[ai,i
2

]
denotes the biggest integer less than or equal to ai,i

2 and ai,i is

the i’th elementary divisor of the Alexander matrix. However, the space of representation
is infinite if ∆ (−1) = 0 [2].

Now a simple calculation for the number of distinct irreducible circle representations
of the n-tangle knot group. Let φ (Xi) =yi where Xi is generator of the n-tangle knot

group (i = 1, 2, ..., n) and φ is a circle representation. Then we know d
(
yi, yi+1

)
=
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d
(
yi+1, yi+2

)
= ϕ, therefore nϕ ≡ 0 (mod2π). Obviously for each solution of the

congruence, one can obtain a circle representation of n-tangle knot group and the solution
set is {

ϕt =
2tπ
n
| t = 1, 2, ..., n− 1

}
Because circle representations corresponding to t and n − t are congruent, the order

of the space of the irreducible circle representations modulo SO(3) is n−1
2 . Note that

the determinant of the n-tangle, |∆ (−1)|, is n, therefore the order of the space of the

irreducible circle representations modulo SO(3) is |∆(−1)|−1
2 . Therefore we have proved

the following main theorem of the paper:

Theorem 4 Let kn be an integer tangle in S3 where n is an positive odd integer and G
denote the Wirtinger presentation of its fundamental group. Then G has an irreducible
SU (2) representation such that the arguments of the images of the generators α if and

only if π−ϕ
2

< α < π+ϕ
2

where ϕ as above. The number of distinct such representations

for a given α is

card

{
2kπ
n

∣∣∣∣ k ∈ {1, 2, ...,
n− 1

2

}}

Hence the space of irreducible representations of G modulo SO(3), R̂ (G) = R∗ (G)/SO (3),

is a disjoint union of n−1
2 open arcs.

By considering that a n-tangle knot is a torus knot of type (2, n), we realize that the
results, about irreducible representations space of n-tangle, in the above theorem and in
the Klassen’s theorem which is following are coincide.

Theorem 5 Let (r, s) be any pair of positive, relatively prime integers and Kr,s denote

the (r, s)-torus knot in S3. R̂ (Kr,s) is thedisjoint union of (r−1)(s−1)
2 open arcs [4].

For instance, let go back trefoil. We know that the order of the space of the irreducible

circle representations of the group of trefoil modulo SO(3) is 1. For trefoil, ϕ is 2π
3

,

therefore there exist an irreducible representation in S2
α if and only if π

6
< α < 5π

6
. Hence

the space of irreducible representations of the group of trefoil modulo SO(3) is an open
arc.
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