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ABSTRACT 

 
In simple linear regression, based on OLS (Ordinary Least Squares) technique, there considerate 

only one error which arises from the dependent variable. In practice there may be some measurement 
error that may arise from dependent, independent or from both variables. At that point because the as-
sumptions of OLS is not met, the researchers must apply regression techniques that assume the error 
term may be effected because of the measurements of all variables, either dependent or independent. 
These kinds of regression techniques are called as “Type II Regression Techniques” in literature.  

 
Under these conditions the aim of this study is to introduce Type II linear regression techniques as 

a whole which are separately introduced in literature and must be used when there is a measurement 
error also in the independent variable. 
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ÖLÇÜM HATALI MODELLERDE DOĞRUSAL REGRESYON TEKNİKLERİ 
 

ÖZ 
 

EKK (En Küçük Kareler) temeline dayalı basit doğrusal regresyonda, sadece bağımlı değişkenden 
kaynaklanan bir hataya yer verilmektedir. Pratikte, bağımlı, bağımsız ya da her iki değişkenden de 
kaynaklanabilecek ölçüm hataları söz konusu olabilir. Bu noktada EKK varsayımları sağlanmayacağı 
için araştırmacılar bağımlı ya da bağımsız tüm değişkenlerin ölçümünde meydana gelecek hataları 
dikkate alan regresyon tekniklerine başvurmalıdır. Bu tür regresyon teknikleri literatürde “Tip II Reg-
resyon Teknikleri” olarak bilinmektedir. 

 
Bu koşullar altında, yapılan bu çalışmanın amacı, bağımsız değişkenin de hata içerdiği durum-

larda kullanılması gereken ve literatürde dağınık halde bulunan Tip II doğrusal regresyon tekniklerini 
bir bütün olarak tanıtmaktır. 
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1. INTRODUCTION 
 
Linear Measurement error models arise 

when the independent variable in a regression 
analysis is measured with error. It is well known 
that this random measurement error artificially 
inflates the dispersion of the observations on the 
independent variable and biased least squares 
estimates of slope towards zero (Edland, 1996). 
The least-squares method is frequently used to 
calculate the slope and intercept of the best line 
through a set of data points. However, least-
squares regression slopes and intercepts may be 
incorrect if the underlying assumptions of the 
least-squares model are not met. Two factors in 
particular that may result in incorrect least-
squares regression coefficients are: (a) impreci-
sion in the measurement of the independent (x-
axis) variable and (b) inclusion of outliers in the 
data analysis (Cornbleet and Gochman, 1979). 
Ordinary Least Squares Regression (OLR) as-
sumes an error-free x variable and a constant 
analytical imprecision of the y variable (also 
called “homoscedastic” variance), both of which 
are seldom met in practice (Stöckl, et al, 1998). 

 
Linear Regression techniques, when there is 

a measurement error in all variables, are espe-
cially used in clinical chemistry, when there is a 
method comparison problem. “Method Com-
parison” means there are two or more methods 
which serve for the same aim and we compare 
either the new method can be used instead of the 
current one. Furthermore someone want to 
measure the agreements of two methods, so one 
of the alternatives is to use linear regression 
techniques.  

 
Most of the statistical models used in 

method comparison studies are designed for 
normally distributed data. However, some sys-
tems in clinical diagnostic are based on counting 
of certain particles rather than measuring a sub-
stance. In some of these cases, particularly in 
hematology where counting of cell types is of 
primary importance, the assumption of normal 
distribution is not always appropriate. Thus, 
other distributions beside normal distribution 
need to be considered (Magari 2004). 

 
The comparison of analytical methods using 

regression analysis began in the fifties when 
Mandel and Linnig (1957) first applied the joint 
confidence interval test for the intercept and the 
slope to chemical problems. However, applying 
this test to the regression parameters derived 
from the least squares method assumes that the 
results in the x-axis (often the reference method) 
are error-free, or that the errors assigned to the 
reference method are negligible with respect to 

those given by the new method (y-axis). This is 
not always true since the precision of both 
methods must often be taken into account. These 
precisions can be considered by using the differ-
ent existing approaches for calculating regres-
sion coefficients and related statistical parame-
ters that consider errors in both axes (Riu and 
Rius, 1997). 

 
2. MEASUREMENT AND THE MODEL 

 
Measurement is a process made under ef-

fects of many factors on the measured variable 
and measuring process. In the ideal measure-
ment, all the differences by the side of the exam-
ined variable are expected to become from the 
differences between the statistical units (Süm-
büloğlu and Sümbüloğlu, 1998). Measurement 
error is the difference between the true and the 
measured value of the measured quality (Arma-
ğan, 1983, Ercan ve Kan’dan 2006).  

 
The scales x and y may be expressed in the 

same units. For reasons of convention, it may be 
important for y to have the same measurement 
scale as x (Dunn and Roberts, 1999). 

 
Measurement error models can also be used 

for the nonlinear regression techniques and in 
the problems that contain more than one inde-
pendent variable. (Roy, 1994). But the solutions 
will be more complex in those problems. 

 
A linear relationship between the target val-

ues of the two methods is assumed as in [1]. 
 

ii XY βα +=         [1] 
 
The measured value is likely to deviate 

from the target value by some small “random” 
amount (ε or δ). For a given sample measured 
by two clinical chemistry methods, the follow-
ing relations exist (Linnet, 1998): 

 
iii Xx ε+=  

 
iii Yy δ+=  

 
The error term that wanted to minimized in 

Type II regression techniques is the squares of 
the direct or indirect (by a known angle) dis-
tances of  the observed values (Xi and Yi, which 
include some measurement errors) to the regres-
sion line which wanted to be estimated. 
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3. TYPE II LINEAR REGRESSION 
TECHNIQUES 

 
By the type of the data different statistical 

techniques can be applied for the model which is 
collected with some measurement error. If the 
researcher decides to apply linear regression to 
these data, then Type II regression techniques 
which are given below may be used. 

 
If we examine essence, Type II regression 

techniques also take place in robust techniques. 
The most important factors to prefer the robust 
techniques are obtaining unbiased estimates 
when there is an outlier in data set and when the 
distribution of the data is far away from normal 
distribution (Saraçlı, 2008). 

 
3.1 OLS-Bisector Regression Technique 

 
The OLS-Bisector regression Technique 

simply defines the line that mathematically bise- 

cts the OLSYX and the OLSXY lines (Saylor et 
al., 2006). As Isobe et al. (1990) mentioned, 
there is not any study in the literature regarding 
the merits or deficiencies of the OLS-Bisector 
line. 

 
By OLS-Bisector Technique, the slope can 

be calculated as in [2], and the calculations of 
covariance and the variance of the slope are 
given in [3] and [4]. 

 

( ) ( )( )
 +++−+=

− 2
2

2
121

1

21
ˆ1ˆ11ˆˆˆˆˆ βββββββ Bis

[2] 
 

Here 
xx

xy

S
S

=1̂β  is the slope of OLS(X|Y) 

regression and 
xy

yy

S
S

=2β̂  is the slope of 

OLS(Y|X) regression.  
 

 
[3] 

 
 
and 
 

 
[4] 

 
 
As a result of bisecting the regression lines 

which are calculated by OLS technique taking as 
a depended variable X and Y respectively, OLS-
Bisector technique takes into account the meas-
urement errors of all variables and gives a better 
performance (Saraçlı, 2008). 

 
3.2 Major Axis Regression (Orthogonal) 

Technique 
 
The Orthogonal regression is geometrically 

most attractive, being the axis of minimum mo-
ment of inertia and being invariant under rota-
tion. However, it can only be used with scale 
free variables, such as logarithmically trans-
formed variables or ratios of observable vari-
ables (Isobe et al., 1990). 

 
Unlike standard regression, the OR line 

does not depend on which variable is called “in-
dependent” and which “dependent.” It always 
lies between the regression line of y on x and the 
regression line of x on y (Amman and Ness, 
1988) 

 
In Major Axis (Orthogonal) Regression, the 

error that is aimed to be minimized is shown in 
Figure 1. (Wolfe, 2007(a)): 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1. The error that is aimed to be mini-

mized in MA Regression. 
 

The calculation of the slope and the vari-
ance of this slope which want to be estimated by 
this technique are given in [5] and [6]. 
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[5] 

 
 

 
[6] 

 
 
In his book, Fuller (1987) does not use the 

term “Orthogonal Regression” and calls a 
method of moments estimator. (Carroll and 
Ruppert 1996). The simplest form of the slope 
calculation in Fuller’s book is as [7] 

 
 

 
[7] 

 
 

3.3 Reduced Major Axis Regression 
Technique 
 
The reduced major axis regression was pro-

posed to alleviate the scale dependency of or-
thogonal regression (Isobe et al., 1990). 

 
In Reduced Major Axis Regression, the er-

ror that is aimed to be minimized is shown in 
Figure 2. (Wolfe, 2007(b)). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The error that is aimed to be mini-

mized in RMA Regression. 
 
The calculation of the slope and the vari-

ance of this slope which want to be estimated by 
this technique are given in [8] and [9]. 

 
 

[8] 
 
 

 
 
 

 
 
 
 

3.4 Deming Regression Technique 
 
The Deming method, also called the errors-

in-variables model or the functional or structural 
relationship model in the statistical literature, 
takes measurement errors for both sets of meas-
urements into account and is therefore more 
generally applicable than OLR (Linnet, 1998). 

 
In his book, named as “Statistical adjust-

ment of data”, Deming (1943) advised to take 
care the errors of both the independent and the 
dependent variables and to minimize the com-
mon error simultaneously to obtain the best line 
that fits the data. 

 
Deming approaches the problem by mini-

mizing the sum of the square of the residuals in 
both the x and y directions simultaneously. This 
derivation results in the best line to minimize the 
sum of the squares of the perpendicular dis-
tances from the data points to the line (Cornbleet 
and Gochman, 1979). 

 
To estimate the regression line in Deming 

regression, the λ value, given in [10], must be 
calculated first: 

 
2

2
ex

ey

S
S

λ =                                                                  [10] 

 
Here; Sex and Sey are the error variances of x 

and y values respectively. 
 
The λ value determines the angle in which 

to project points onto the line to minimize the 
sum of squared deviations (Linnet 1998). And in 
Deming regression, the distance between the 
observed and predicted values, with this angle is 
aimed to minimize as error term. When the λ 
value is equal to 1, this means that the result of 
Deming regression is equal to the results of or-
thogonal regression. Because orthogonal regres-
sion is a special form of Deming regression in 
which the variance of error terms are supposed 
to be equal. 

 
Deming regression calculation assumes 

Gaussian distribution of errors in both x and y 
values (Billo, 2001). The error that is aimed to 
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be minimized in Deming regression is shown in 
Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The error that is aimed to be mini-
mized in Deming regression. 

 
The calculation of the slope in Deming re-

gression is given in [11]. The terms u,p, and q 
are also given in [12] 

 
 

[11] 
 

 
( )∑ −= 2xxu i  

 
( )2∑ −= yyq i  

 
( )( )yyxxp ii −−=∑        [12] 

 
For the Deming procedure, general formu-

las for Standard errors of slope and intercept are 
complicated and in practice, they are most easily 
estimated using a computerized resampling 
principle such as the jackknife method (Linnet, 
1999). 

 
The standard error of the slope in Deming 

regression can be calculated as in [13], [14], 
[15] and [16] which are based on Jacknife, the 
resampling technique (Linnet, 1990). 

 
( ) i

i bkkbb 1−−=                              [13] 
 
Here; bi is obtained by Jackknife resam-

pling technique. 
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( ) ( ) kbVSE jDEM /ˆ =β                       [16] 
 

3.5 Passing-Bablok Regression Technique 
Passing and Bablok have proposed a linear 

regression procedure with no special assump-
tions regarding the distribution of the data. This 
nonparametric method is based on ranking the 
observations so it is computationally intensive. 
The result is independent of the assignment of 
the reference method as X (the independent vari-
able) and the test method as Y (the dependent 
variable) (Magari, 2002). 

 
The slope and intercept are estimated by a 

nonparametric principle, which yields resistance 
towards outliers, and there are no assumptions 
of Gaussian error distributions Notice, however, 
that the parametric regression procedures do not 
presume Gaussian distributions of target values, 
but only as regards the error distributions. Fur-
thermore, the jackknife principle used for esti-
mation of standard errors for Deming and 
Weighted Deming procedures is also in princi-
ple nonparametric (CBStat, 2008). 

 
As Passing and Bablok (1983) mentioned, 

the calculation of the slope and the intercept are 
given in [17], [18] and [19]. 

 

           1i j
ij

i j

y y
b i j n

x x
−

= ≤ < ≤
−

       [17] 

 
 

 
                     [18] 

 
 
 
Here N is the sample size and K is the num-

ber of the values of bij with bij<-1. 
 

[19] 
 

 
The method takes measurement errors for 

both x and y into account, but the method pre-
sumes that the ratio between analytical standard 
deviations is related to the slope in a fixed man-
ner Otherwise, a biased slope estimate arises. 
The method is not as efficient as the correspond-
ing parametric procedures, i.e. Deming proce-
dure (CBStat, 2008). 
 
3.6 York Regression Technique 

 
As York (1969) stated in his journal, this 

regression technique considers the errors in both 
variables. 
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The slope in York regression which requires 
an iterative solution is given in [20], [21], [22], 
and [24] 

 
 

 
[20] 

 
Here; 

 
       [21] 

 
 

 
and 
 

 
[22] 

 
 

and 

 and 

∑

∑

=

== n

i
i

n

i
ii

W

yW
y

1

1                       [23] 

 
Since iW  and iβ  are functions of b , Eq.[20] 

must be solved iteratively. Given a set of 
weights ( )iXw  and ( )iYw  and error correlation 

ir  for each data point, choose an initial guess for 
b (possibly from either the OLSXY or orthogo-
nal technique). Iterate through the following 
steps until successive values of b are within a 
predefined tolerance: 

 
1. Using b , ( )ixw , ( )iyw  and ir , calculate iW  for 
each data point from [21] 

 
2. Using the observed points ( )ii yx ,  and iW , 
calculate x  and y  from [23] 

 
3. Calculate iβ  for each data point from [22] 

 
4. Calculate a new estimate for b from [20] and 
return to step (1). 

 
5. The intercept, a, is then found from xbya −=  

 
The York regression technique is thus very 

straightforward to implement and in our experi-
ence seldom requires more than 10 iterations 
(and usually much less) for convergence. (Say-
lor et al., 2006) 
 

In simulation studies about York regression, 
the weights (w(xi) and w(yi))  and the correlation 
coefficient ri, given as above, are taken as 1 and 
0 respectively as standard (Saraçlı, 2008). 

 
The variance formula of this slope can be 

calculated as in [24] (York et al., 2004). 
 

 
[24] 

 
 
For all the regression techniques given 

above, the intercept term (except Passing-
Bablok regression) can be calculated as in [25]: 

 
[25] 

 
 
Here as known, y  and x  are the means of 

the yi and xi values respectively. 
 

4. RESULT AND CONCLUSION 
 
By examining the regression techniques ei-

ther taking account the error term which results 
from only dependent variable or both variables, 
regression techniques can be separated to two 
groups as Type I and Type II regression Tech-
niques. As mentioned above, Type I regression 
techniques are interested in only the error terms 
of dependent variables whereas the Type II re-
gression techniques are interested both the error 
terms of dependent and independent variables. 
Also in literature Type II techniques are called 
as “Errors in variables” regression techniques. 

 
When the measurements of both variables 

include some errors, then Type II regression 
techniques are necessary to calculate the correct 
slope and intercept parameters of the regression 
line. In Type II Regression techniques the meas-
urements of the variables are measured with 
some error as ε and δ. To decide which Type II 
regression technique is best for the data set on 
the hand, the MSE (Mean Squared Error) can 
guide to the researchers.  

 
Another way to see the agreements of two 

methods is called as Bland-Altman graph. This 
technique is also used in method comparison 
studies but in the restrictions of this study we 
did not mention this technique. We hope this 
study will help the researchers when there is a 
measurement error problem and regression tech-
niques are needed to be used. 
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