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Amaç: Son yıllarda, medisinal kimyada farmakolojik olarak aktif halkaların moleküler hibridizasyonuna dayalı antikolinesteraz ajanların tasarımı 
ilgi çekmektedir. Bu amaçla, burada tiyazol ve pirazolin halkalarının moleküler hibridizasyonuna dayalı antikolinesteraz ajanlar tasarlamayı ve 
sentezlemeyi hedefledik.
Gereç ve Yöntemler: 3-(2-Furil)-5-(1,3-benzodioksol-5-il)-1-tiyokarbamoil-4,5-dihidro-1H-pirazolün 2-bromo-1-ariletanon türevleri ile halka 
kapanma reaksiyonuyla yeni tiyazolil-pirazolin türevleri sentezlendi. Bileşikler, Ellman’ın spektrofotometrik yönteminin bir modifikasyonu kullanılarak 
AChE ve BuChE üzerindeki inhibe edici etkileri için araştırıldı. Bu çalışmanın bir parçası olarak, bileşiklerin Lipinski’nin beş kuralına uyumluluğu 
değerlendirildi. Fizikokimyasal parametreler (log P, TPSA, nrotb, molekül ağırlığı, hidrojen bağı donörlerinin ve alıcılarının sayısı, molekül hacmi) 
Molinspiration yazılımı kullanılarak hesaplandı.
Bulgular: Bu seride, 2-[5-(1,3-benzodioksol-5-il)-3-(2-furil)-4,5-dihidro-1H-pirazol-1-il]-4-(4-florofenil)tiyazol en güçlü BuChE inhibitörü 
(%43.02±2.71) olarak bulunurken, 2-[5-(1,3-benzodioksol-5-il)-3-(2-furil)-4,5-dihidro-1H-pirazol-1-il]-4-(naftalen-2-il)tiyazolün en etkili AChE 
inhibitörü (%38.5±2.85) olduğu bulundu. Bu bileşikler, Lipinski’nin beş kuralının sadece bir parametresini ihlal ettiler. Lipinski’nin kuralına dayanarak, 
makul oral biyoyararlanıma sahip olmaları beklenmektedir.
Sonuç: Bu çalışmanın ışığında, etkinliği arttırılmış yeni kolinesteraz inhibitörlerinin üretilmesi için tanımlanmış bileşiklerin yapısal modifikasyonu 
devam etmektedir.
Anahtar kelimeler: Benzodioksol, kolinesterazlar, Lipinski’nin 5 kuralı, pirazolin, tiyazol

Objectives: In recent years, the design of anticholinesterase agents based on molecular hybridization of pharmacologically active scaffolds has 
attracted a great deal of interest in medicinal chemistry. For this purpose, we aimed to design and synthesize anticholinesterase agents based on 
the molecular hybridization of thiazole and pyrazoline scaffolds.
Materials and Methods: New thiazolyl-pyrazoline derivatives were synthesized via the ring closure reaction of 3-(2-furyl)-5-(1,3-benzodioxol-5-yl)-
1-thiocarbamoyl-4,5-dihydro-1H-pyrazole with 2-bromo-1-arylethanone derivatives. The compounds were investigated for their inhibitory effects 
on AChE and BuChE using a modification of Ellman’s spectrophotometric method. As a part of this study, the compliance of the compounds to 
Lipinski’s rule of five was evaluated. The physicochemical parameters (log P, TPSA, nrotb, molecular weight, number of hydrogen bond donors and 
acceptors, molecular volume) were calculated using Molinspiration software.
Results: 2-[5-(1,3-Benzodioxol-5-yl)-3-(2-furyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-(naphthalen-2-yl)thiazole was found to be the most effective AChE 
inhibitor (38.5±2.85%), whereas 2-[5-(1,3-benzodioxol-5-yl)-3-(2-furyl)-4,5-dihydro-1H-pyrazol-1-yl]-4-(4-fluorophenyl)thiazole was found as the 
most potent BuChE inhibitor (43.02±2.71%) in this series. These compounds only violated one parameter of Lipinski’s rule of five. On the basis of 
Lipinski’s rule, they were expected to have reasonable oral bioavailability. 
Conclusion: In the view of this study, the structural modification of the identified compounds is on-going for the generation of new cholinesterase 
inhibitors with enhanced efficacy.
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INTRODUCTION
Alzheimer’s disease (AD), a progressive multifarious 
neurodegenerative disorder, is the leading cause of dementia 
in older people worldwide. The incidence of AD is predicted 
to increase dramatically in the future, as the average age of 
the population increases. Although extensive efforts have been 
devoted to the discovery of anti-AD drugs for almost a century, 
donepezil, galantamine, rivastigmine (cholinesterase inhibitors) 
and memantine (N-methyl-D-aspartate receptor antagonist) 
are the only drugs currently used for the management of AD. 
These agents only provide symptomatic relief but do not halt 
the progression of the disease.1-5

The development of new potent anti-AD drugs is a difficult 
and time-consuming process, and many molecules reaching 
clinical trials simply fail. Most phase 2 clinical trials ending 
with a positive outcome do not succeed in phase 3, often due to 
serious adverse effects or lack of therapeutic efficacy.6,7

Acetylcholinesterase (AChE) is a highly viable target for the 
design and development of potent anti-AD agents due to its role 
in the pathogenesis of AD.1-8 On the other hand, in progressed 
AD, the level of AChE in the brain declines to 55-67% of normal 
values, whereas the level of butyrylcholinesterase (BuChE) 
increases to 120% of normal levels, indicating that BuChE plays 
a pivotal role for acetylcholine (ACh) hydrolysis in the late stage 
of AD. As a result, selective inhibition of BuChE has emerged 
as a promising therapeutic approach to elevate ACh level in 
progressed AD.9,10

Thiazole has been recognized as a promising scaffold for the 
design and development for central nervous system (CNS) active 
agents. There are thiazole-based CNS drugs currently used as 
therapeutic agents for the treatment of various CNS disorders 
and a number of thiazole derivatives are in clinical trials.11 
Diverse modifications of the thiazole ring at various positions 
have led to a variety of thiazole-based CNS agents as AChE 
and BuChE inhibitors, secretase inhibitors, monoamine oxidase 
(MAO) inhibitors, neuronal nitric oxide synthase inhibitors, ACh 
receptor ligands, adenosine receptor ligands, dopamine receptor 
ligands, serotonin receptor ligands, glutamate receptor  ligands, 
ɣ-aminobutyric acid receptor ligands, opioid receptor ligands, 
neuroprotective and anticonvulsant agents.11-14 Acotiamide has 
been reported to be a promising thiazole-based agent for the 
treatment of functional dyspepsia in clinical trials. Acotiamide 
enhances ACh release in the enteric nervous system through 
AChE inhibition and M1/M2 muscarinic receptor antagonism.15

Pyrazoline has also attracted a great deal of interest as 
an indispensable scaffold due to its diverse therapeutic 
applications extending from CNS applications to antimicrobial 
therapy.16,17 Diversely substituted pyrazolines embedded with 
a variety of functional groups have been reported to inhibit 
MAOs and cholinesterases, molecular targets important for the 
treatment of neurodegenerative disorders such as Parkinson’s 
disease and AD.16-23

Prompted by the aforementioned findings and in the continuation 
of our ongoing research on thiazoles24 and pyrazolines25 as 

cholinesterase inhibitors, we designed a new series of thiazolyl-

pyrazoline derivatives based on the molecular hybridization 
of thiazole and pyrazoline scaffolds.26 A facile and versatile 
synthetic route was used to prepare the title compounds and 
their inhibitory effects on AChE and BuChE were investigated. 
A computational study for the prediction of Absorption, 
Distribution, Metabolism and Excretion (ADME) properties of 
all compounds was also performed.

MATERIALS AND METHODS 

Chemistry
All reagents were purchased from commercial suppliers and 
were used without further purification. Melting points (MP) 
were determined on an Electrothermal 9100 MP apparatus 
(Weiss-Gallenkamp, Loughborough, UK). 1H-NMR spectra were 
recorded on a Bruker spectrometer (Bruker, Billerica, MA, 
USA). Mass spectra were recorded on an Agilent LC-MSD-Trap-
SL Mass spectrometer (Agilent, Minnesota, USA). Elemental 
analyses (C, H, N) were performed on a Perkin Elmer EAL 240 
elemental analyzer (Perkin-Elmer, Norwalk, CT, USA) and the 
results were within ±0.4% of the theoretical values. Thin layer 
chromatography (TLC) was performed on TLC Silica gel 60 F254 
aluminium sheets (Merck, Darmstadt, Germany) to check the 
purity of the compounds.

General procedure for the synthesis of the compounds
1-(2-furanyl)-3-(1,3-benzodioxol-5-yl)-2-propen-1-one (1)

A mixture of 2-acetylfuran (0.06 mol), 1,3-benzodioxole-5-
carboxaldehyde (0.06 mol) and 40% (w/v) sodium hydroxide 
(10 mL) in ethanol (30 mL) was stirred at room temperature 
for about 24 h. The resulting solid was washed, dried, and 
crystallized from ethanol.27,28

3-(2-furanyl)-5-(1,3-benzodioxol-5-yl)-1-thiocarbamoyl-4,5-
dihydro-1H-pyrazole (2)

A mixture of compound 1 (0.03 mol), thiosemicarbazide (0.036 
mol) and sodium hydroxide (0.075 mol) was refluxed in ethanol 
(30 mL) for 12 h. The product was poured into crushed ice. The 
precipitate was filtered and crystallized from ethanol.29

2-[5-(1,3-benzodioxol-5-yl)-3-(furan-2-yl)-4,5-dihydro-1H-
pyrazol-1-yl]-4-(aryl)thiazole (3a-g)

A mixture of compound 2 (0.01 mol), 2-bromo-1-arylethanone 
(0.01 mol) in ethanol (20 mL) was refluxed for 10 h. After 
cooling, the precipitate was collected by suction filtration. The 
product was crystallized from ethanol.29

2-[5-(1,3-benzodioxol-5-yl)-3-(furan-2-yl)-4,5-dihydro-1H-
pyrazol-1-yl]-4-(4-(methylsulfonyl)phenyl)thiazole (3a)

Yield: 76%; MP: 178-179°C.
1H-NMR (400 MHz, DMSO-d6) d (ppm): 2.99-3.00 (1H, m), 3.22 
(3H, s), 3.92 (1H, dd, J=17.36, 11.16 Hz), 5.57 (1H, dd, J=11.52, 5.96 
Hz), 5.93 (2H, s), 6.65 (1H, s), 6.87-6.95 (4H, m), 7.59 (1H, s), 
7.86 (3H, d, J=8.72 Hz), 7.94 (2H, d, J=7.44 Hz).

Elemental analysis calculated (Anal. calcd) for C24H19N3O5S2 (%): 
C, 58.40; H, 3.88; N, 8.51. Found (%): C, 58.45; H, 3.89; N, 8.58.

MS (ESI) m/z: 494 [M+H]+.
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2-[5-(1,3-benzodioxol-5-yl)-3-(furan-2-yl)-4,5-dihydro-1H-
pyrazol-1-yl]-4-(4-(trifluoromethyl)phenyl)thiazole (3b)

Yield: 80%; MP: 77-78°C.
1H-NMR (400 MHz, DMSO-d6) d (ppm): 3.12-3.13 (1H, m), 3.90 
(1H, dd, J=18.32, 12.20 Hz), 5.57 (1H, dd, J=11.48, 5.96 Hz), 5.94 
(2H, s), 6.65 (1H, s), 6.86-6.96 (4H, m), 7.55 (1H, s), 7.69 (2H, d, 
J=8.12 Hz), 7.88-7.92 (3H, m).

Anal. calcd for C24H16F3N3O3S (%): C, 59.62; H, 3.34; N, 8.69. 
Found (%): C, 59.57; H, 3.39; N, 8.78.

MS (ESI) m/z: 484 [M+H]+.

2-[5-(1,3-benzodioxol-5-yl)-3-(furan-2-yl)-4,5-dihydro-1H-
pyrazol-1-yl]-4-(4-fluorophenyl)thiazole (3c)

Yield: 81%; MP: 89-90°C.
1H-NMR (400 MHz, DMSO-d6) d (ppm): 3.10-3.11 (1H, m), 3.89 
(1H, dd, J=17.76, 11.80 Hz), 5.55 (1H, dd, J=11.52, 5.92 Hz), 5.94 
(2H, s), 6.64-6.65 (1H, m), 6.85-6.94 (4H, m), 7.14-7.28 (3H, m), 
7.71-7.75 (2H, m), 7.86-7.87 (1H, m).

Anal. calcd for C23H16FN3O3S (%): C, 63.73; H, 3.72; N, 9.69. 
Found (%): C, 63.69; H, 3.77; N, 9.63.

MS (ESI) m/z: 434 [M+H]+.

2-[5-(1,3-benzodioxol-5-yl)-3-(furan-2-yl)-4,5-dihydro-1H-
pyrazol-1-yl]-4-(2,6-difluorophenyl)thiazole (3d)

Yield: 78%; MP: 137-138°C.
1H-NMR (400 MHz, DMSO-d6) d (ppm): 3.13-3.14 (1H, m), 3.93 
(1H, dd, J=17.73, 11.82 Hz), 5.58 (1H, dd, J=11.70, 6.30 Hz), 5.98 
(2H, s), 6.67-6.69 (1H, m), 6.88-6.98 (4H, m), 7.10-7.21 (2H, m), 
7.26-7.34 (1H, m), 7.83-7.90 (2H, m).

Anal. calcd for C23H15F2N3O3S (%): C, 61.19; H, 3.35; N, 9.31. Found 
(%): C, 61.13; H, 3.42; N, 9.33.

MS (ESI) m/z: 452 [M+H]+.

2-[5-(1,3-benzodioxol-5-yl)-3-(furan-2-yl)-4,5-dihydro-1H-
pyrazol-1-yl]-4-(2,5-dimethoxyphenyl)thiazole (3e)

Yield: 77%; MP: 113-114°C.
1H-NMR (400 MHz, DMSO-d6) d (ppm): 3.03-3.04 (1H, m), 3.68 
(3H, s), 3.76 (3H, m), 3.88 (1H, dd, J=17.84, 12.24 Hz), 5.50 (1H, 
dd, J=11.52, 7.08 Hz), 5.94 (2H, s), 6.64-6.65 (1H, m), 6.75-6.94 
(5H, m), 7.07-7.19 (2H, m), 7.38-7.41 (1H, m), 7.87 (1H, s).

Anal. calcd for C25H21N3O5S (%): C, 63.15; H, 4.45; N, 8.84. Found 
(%): C, 63.11; H, 4.42; N, 8.85.

MS (ESI) m/z: 476 [M+H]+.

2-[5-(1,3-benzodioxol-5-yl)-3-(furan-2-yl)-4,5-dihydro-1H-
pyrazol-1-yl]-4-[4-(morpholin-4-yl)phenyl]thiazole (3f) 

Yield: 78%; MP: 210-211°C.
1H-NMR (400 MHz, DMSO-d6) d (ppm): 3.01-3.02 (1H, m), 3.08 
(4H, bs), 3.69 (4H, s), 3.87 (1H, dd, J=17.60, 12.72 Hz), 5.54 (1H, 
dd, J=12.44, 5.20 Hz), 5.93 (2H, s), 6.59-6.64 (3H, m), 6.80-6.94 
(6H, m), 7.55 (1H, s), 7.86 (1H, s).

Anal. calcd for C27H24N4O4S (%): C, 64.78; H, 4.83; N, 11.19. Found 
(%): C, 64.72; H, 4.88; N, 11.16.

MS (ESI) m/z: 501 [M+H]+.

2-[5-(1,3-benzodioxol-5-yl)-3-(furan-2-yl)-4,5-dihydro-1H-
pyrazol-1-yl]-4-(naphthalen-2-yl)thiazole (3g)

Yield: 83%; MP: 153-154°C.
1H-NMR (400 MHz, DMSO-d6) d (ppm): 3.09 (1H, dd, J=17.76, 
2.72 Hz), 3.78 (1H, dd, J=17.96, 11.48 Hz), 5.80 (1H, dd, J=11.12, 
2.68 Hz), 5.94 (2H, s), 6.59-6.87 (6H, m), 7.06 (1H, s), 7.19 (1H, 
s), 7.69 (1H, s), 7.81 (1H, s), 7.88 (1H, s), 7.95 (2H, d, J=8.80 Hz), 
8.16-8.19 (1H, m).

Anal. calcd for C27H19N3O3S (%): C, 69.66; H, 4.11; N, 9.03. Found 
(%): C, 69.75; H, 4.29; N, 9.06.

MS (ESI) m/z: 466 [M+H]+.

Determination of AChE and BuChE inhibitory activity
The inhibitory effects of compounds 3a-g on AChE and 
BuChE were determined using Ellman’s method30 with minor 
modifications (electric eel AChE enzyme was used instead of 
bovine AChE enzyme and buffer was added as 2.4 mL instead 
of 3 mL).31 The compounds were dissolved in DMSO and tested 
at the final concentration range 5-80 µg/mL. Twenty microliters 
of enzyme (AChE or BuChE, 1 U/mL) and 10 µL sample were 
added to 2.4 mL buffer, the mixture was incubated at 37°C for 15 
min. After 15 min incubation, 50 µL of 0.01 M 5,5’-dithiobis(2-
nitrobenzoic acid) (DTNB) and 20 µL of 75 mM acetylthiocholine 
iodide or 25 mM butyrylthiocholine iodide were added, and 
the final mixture was incubated at room temperature for 30 
min. A blank was prepared using 10 µL of DMSO instead of 
the test sample, with all other procedures similar to those 
used in the case of the sample mixture. Absorbances were 
measured at 412 nm and 37°C using polystyrene cuvettes with a 
spectrophotometer (UV-1700, Shimadzu). The experiment was 
performed in triplicate. Galantamine was used as a positive 
control. Data are expressed as mean ± standard deviation. The 
inhibition (percent) of AChE or BuChE was calculated using the 
following equation:

I (%)=100 − (ODsample / ODcontrol) × 100

In silico prediction of ADME parameters
The physicochemical parameters [logarithm of octanol/
water partition coefficient (log P), topological polar surface 
area (TPSA), number of rotatable bonds (nrotb), molecular 
weight, number of hydrogen bond donors and acceptors, 
molecular volume] of compounds 3a-g were calculated using 
Molinspiration software.32-35

There was no need for ethics committee approval because our 
work only included in vitro and in silico studies.

RESULTS AND DISCUSSION
The synthesis of thiazole derivatives (3a-g) followed the general 
pathway outlined in Scheme 1. The base-catalyzed Claisen-
Schmidt condensation of 2-acetylfuran with 1,3-benzodioxole-
5-carboxaldehyde gave 1-(2-furanyl)-3-(1,3-benzodioxol-
5-yl)-2-propen-1-one (1), which underwent a subsequent 
cyclization reaction with thiosemicarbazide in the presence of 
sodium hydroxide affording 3-(2-furanyl)-5-(1,3-benzodioxol-
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5-yl)-1-thiocarbamoyl-4,5-dihydro-1H-pyrazole (2). Finally, 
new thiazolyl-pyrazoline derivatives (3a-g) were synthesized 
via the ring closure reactions of compound 2 with 2-bromo-1-
arylethanone derivatives. 

The inhibitory effects of compounds 3a-g on AChE and 
BuChE were determined using a modification of Ellman’s 
spectrophotometric method (Table 1). Galantamine was used as 
a positive control. According to the results, compounds 3a-g 
showed less ChE inhibitory activity than galantamine.

Compounds 3a, 3b, 3e, 3f and 3g showed less than 50% AChE 
inhibition at 80 µg/mL, whereas compounds 3c and 3d showed 
no inhibitory activity against AChE. Compound 3g was identified 
as the most potent AChE inhibitor (38.5±2.85%) in this series. 
This outcome indicated that naphthalene ring enhanced the 
inhibitory activity against AChE. The increased activity can 
be attributed to its high lipophilicity due to the presence of 
naphthalene moiety.

Compounds 3a, 3f and 3g showed no inhibitory activity against 
BuChE, whereas the other compounds showed BuChE inhibitory 
activity ranging from 43.02 to 21.44%. The most selective BuChE 
inhibitor was found as compound 3c (43.02±2.71%) followed 
by compound 3d (38.52±3.33%). This outcome pointed out the 
importance of fluoro substituent for BuChE inhibitory activity.

Table 1. The inhibitory effects of compounds 3a-g on AChE and 
BuChE

Compound
Inhibition% (80 µg/mL)

AChE BuChE

3a 8.60±1.29 ---

3b 29.57±2.31 24.24±2.62

3c --- 43.02±2.71

3d --- 38.52±3.33

3e 25.62±3.23 21.44±2.85

3f 19.79±0.41 ---

3g 38.5±2.85 ---

Galantamine (97.17±0.48)a (80.98±0.22)a

---: No inhibition. aInhibition% at 16 µg/mL, AChE: Acetylcholinesterase, BuChE: 
Butyrylcholinesterase

Table 2. Pharmacokinetic parameters important for bioavailability of compounds 3a-g 

Compound
Molecular propertiesa

MW Log P TPSA nrotb HBA HBD Volume Violations

3a 493.57 4.00 94.24 5 8 0 397.15 0

3b 483.47 6.03 60.10 5 6 0 380.45 1

3c 433.46 5.30 60.10 4 6 0 354.08 1

3d 451.45 5.37 60.10 4 6 0 359.02 1

3e 475.53 5.17 78.57 6 8 0 400.25 1

3f 500.58 5.08 72.57 5 8 0 427.29 2

3g 465.53 6.32 60.10 4 6 0 393.15 1

aMolecular properties were calculated using Molinspiration software. 
MW: Molecular weight, log P: The logarithm of octanol/water partition coefficient, TPSA: Topological polar surface area, nrotb: Number of rotatable bonds, HBA: Number of 
hydrogen bond acceptors, HBD: Number of hydrogen bond donors

Scheme 1. The synthetic route for the preparation of compounds 3a-g. 
Reagents and conditions: (i) 1,3-benzodioxole-5-carboxaldehyde, 40% (w/v) 
NaOH, ethanol, rt, 24 h; (ii) thiosemicarbazide, NaOH, ethanol, reflux, 12 h; 
(iii) 2-bromo-1-arylethanone, ethanol, reflux, 10 h
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As a part of this study, Molinspiration software was used to 
determine their physicochemical parameters (log P, TPSA, 
nrotb, molecular weight, number of hydrogen bond donors and 
acceptors, molecular volume) for the evaluation of the compliance 
of the compounds to Lipinski’s rule of five.32 This rule states 
that most ‘drug-like’ molecules have log P ≤5, molecular weight 
≤500, number of hydrogen bond acceptors ≤10, and number of 
hydrogen bond donors ≤5. Compounds violating more than one of 
these rules may have bioavailability problems.32-35 According to in 
silico studies, compounds 3b, 3c, 3d, 3e, and 3g only violated one 
parameter of Lipinski’s rule of five, whereas compound 3a did not 
violate Lipinski’s rule (Table 2). On the basis of Lipinski’s rule of 
five, they were expected to have good oral bioavailability. On the 
other hand, compound 3f violated two parameters of Lipinski’s 
rule of five, and therefore it can be concluded that compound 3f 
may have bioavailability problems.

CONCLUSIONS
In the current work, new thiazolyl-pyrazoline derivatives were 
synthesized and investigated for their in vitro inhibitory effects on 
AChE and BuChE. Moreover, the compliance of the compounds 
to Lipinski’s rule of five was evaluated. Naphthalene-substituted 
compound 3g was the most potent AChE inhibitor (38.5±2.85%), 
whereas fluoro-substituted compound 3c was the most effective 
BuChE inhibitor (43.02±2.71%) in this series. In the view of this 
work, the structural modification of the identified compounds is 
on-going for the generation of new anticholinesterase agents 
with enhanced efficacy and selectivity.

Conflict of Interest: No conflict of interest was declared by the 
authors.
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