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ABSTRACT Due to the mutual advantage of small-scale online service providers, they need to collaborate
to deliver recommendations based on arbitrarily distributed preference data without jeopardizing their
confidentiality. Besides privacy issues, parties also have concerns regarding the vulnerability against recom-
mendation manipulation attempts, referred to as shilling attacks. Although there are methods for detecting
these injected malicious profiles in central server-based configurations, they are not readily suitable for
employing arbitrarily distributed data. In this paper, we present a novel classification-based shilling attack
detection protocol enabling the recognition of malicious profiles in arbitrarily distributed configurations
without compromising the privacy of collaborating parties. The analysis of the proposed protocol regarding
confidentiality of parties reveals that the process is bound to collaboration by design, which does not allow
parties to achieve detection by themselves. Furthermore, empirical evaluations using real-world preference
data demonstrate that the protocol can achieve significantly high detection rates facilitating privacy-aware
data collaboration.

INDEX TERMS Collaborative filtering, robustness, shilling, detection, arbitrary, partitioned data, privacy.

I. INTRODUCTION
Due to the explosive use of the Internet, the total amount
of public digital information has been growing incessantly.
According to business intelligence startup Domo’s mind-
blowing statistics for 2015, YouTube1 users upload 300 hours
of new video, Twitter2 users send more than 347,000 tweets,
Facebook3 users like more than 4.1 million posts, Amazon4

receives more than 4,310 unique visitors, and Vine5 users
play more than 1 million videos every minute. Besides prov-
ing the staggering increase in online data, these statistics
also reveal the impossibility of human processing of mining
data. Although such richness of data considered to be valu-
able, indeed, it puzzles individuals in discovering appropriate
information and thus brings out the ‘‘information overload
problem’’ [1]. In order to both cope with challenges of
the explosion in the amount of data and simplify knowl-
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1https://www.youtube.com/
2https://twitter.com
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edge discovery, computer-aided personalization systems are
developed, which consider tastes and demands of users [2].
Recommender systems are one of the most popular types
of such systems that are studied extensively in research and
industrial communities [1], [3]. During the last two decades,
many techniques are developed to produce automated person-
alized referrals including collaborative, content-based, and
knowledge-based filtering approaches [2].
Collaborative Filtering (CF) is the most popular recom-

mendation technology that is employed bymany e-commerce
companies and online service providers such as Amazon6

and Google News.7 The basic ideas behind CF are (i) pref-
erences of users’ remain stable and consistent over time [4]
and (ii) users who agreed in their past preferences will most
probably have similar inclinations about new items in the
future [5]–[7]. CF solely relies on preference data collected
from customers on products and services. Therefore, to be
able to provide accurate and dependable referrals, service
providers need to collect a sufficient amount of data before
launching recommendation services. Since the quality of

6https://www.amazon.com/
7https://news.google.com/
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referrals is directly dependent on both the quantity and quality
of collected data, e-commerce companies having lots of users
aremore likely to generate better recommendations compared
to the ones with inadequate data. Moreover, poor recommen-
dations that fail to meet users’ expectations bring companies
into disrepute and affect sales adversely. Thus, e-commerce
companies aim to provide more dependable recommenda-
tions to disqualify their competitors. However, achieving such
goal is not always possible for some e-companies, especially
the newly established ones, due to lack of necessary and
sufficient data, and it turns out to be a challenge [8], [9].
Companies overcome such shortage by collaborating with
other companies with the aim of providing more meaning-
ful recommendations based on the aggregated data [10].
However, there are risks and obstacles in establishing such
cooperation. Since preference databases contain valuable
preference information on consumer habits [4], collaborators
hesitate to share the financial assets that enable them to satisfy
their customers. In addition to these privacy issues, legal
regulations complicate such collaboration, as well [11], [12].
Over the past few years, researchers have proposed

Privacy-Preserving Distributed Collaborative Filtering
(PPDCF) schemes that allow collaboration of two or more
online recommendation services, even the competing ones
[7], [13]–[15]. According to these studies, data collected
for recommendation purposes might be distributed between
two or more parties in three different data distribution sce-
narios, i.e., horizontal, vertical, or arbitrary. In horizontally
distributed data (HDD) scenario, various parties hold dis-
joint sets of ratings for an identical set of items. Whereas,
in vertically distributed data (VDD) scenario, different parties
have disjoint sets of ratings collected from an identical set of
users. Finally, in arbitrarily distributed data (ADD) scenario,
which arises as the most probable to occur in the real world
conditions, different parties hold distinct ratings for a shared
set of users and items, and there is not a simple pattern of how
ratings distribute between the parties [16].

A. PROBLEM DEFINITION
In addition to insufficient data, being subject to vicious
attacks is yet another challenge faced by CF algorithms.
Malicious users or competitor vendors, who compete unfairly
by acting as a genuine user, might create fake user profiles
and submit them to the central server aiming a bias in rec-
ommendations for their benefit [17], [18]. Such attempts are
known as ‘‘shilling’’ or ‘‘profile injection’’ attacks [19], [20].
These attacks intend to manipulate recommendation outputs
by either levitating or reducing (referred to as push and nuke
attacks, respectively) popularity of targeted items depending
on the aim of the attackers [18], [21]. Research orientation
in this field includes generating appropriate attacking strate-
gies and analyzing their effects on different CF algorithms,
developing shilling attack detection strategies, and proposing
robust algorithms resistant against shilling attacks [17].
The literature provides clear solutions regarding aforemen-

tioned fundamental problems of CF systems, i.e., (i) private

protocol definitions allowing cooperation of data holders
without jeopardizing corporate privacy toward insufficient
data problem and (ii) centralized data-based shilling attack
detecting solutions for improving the robustness of stand-
alone CF systems. However, Yılmazel and Kaleli [22] show
that PPDCF solutions are still vulnerable to shilling attacks
since existing detection methods fall into abeyance when
applied on distributed data. Despite protecting corporate pri-
vacy, authors demonstrated with experiments that state-of-
the-art PPDCF schemes are defenseless against well-known
shilling attack strategies. Existing solutions proposed for
improving the robustness of centralized CF systems fail to
be applied directly onto privacy-preserving ADD-based sys-
tems [22]. Therefore, mechanisms need to be developed that
can enable detection of malicious profiles in ADD with-
out compromising the privacy of collaborating companies in
order for them to maintain cooperation.

B. CONTRIBUTIONS AND ORGANIZATION
In this study, we focus on detecting malicious user profiles
aiming to manipulate the recommendations for particular
items in PPDCF systems without jeopardizing the privacy of
distributed parties. We propose the distributed version of a
well-known classification-based attack detection method that
can perform onADDwithout sacrificing privacy, and we con-
firm that parties alone cannot successfully detect distributed
attack profiles by themselves, especially having lower filler
size. Main contributions of the study can be listed as follows:
1) Novel protocols that privately compute various classi-

fication attributes over ADD are proposed.
2) Private and distributed version of a well-known

classification-based attack detection method for ADD
is derived.

3) Established that employing the proposed approach, col-
laborating parties cannot successfully detect distributed
shilling attack attempts on their own and are obliged to
cooperate.

The rest of the paper is organized as follows: In Section II,
the gap in the literature is manifested by reviewing PPDCF
and shilling attack domains whereas, in Section III, related
background information is given. Section IV presents pro-
posed private protocols for the privacy-aware generation of
classification attributes. Section V empirically evaluates the
performance of proposed protocols through real-world data-
based experiments. Finally, conclusions are given, and future
works are discussed in Section VI.

II. RELATED WORK
Before diving in the distributed detection of shilling pro-
files in ADD scenarios, we provide a general overview of
data distribution schemes, the robustness of recommenda-
tion algorithms, and detection of shilling profiles. It is very
likely that a particular user’s ratings to distribute among
more than one parties due to different shopping histories.
Such companies, particularly the ones having inadequate
data, might collaborate to provide more qualified referrals.
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However, corporate privacy is the biggest obstacle to such
cooperation, since collected data is a valuable and confi-
dential asset of a company. Besides confidentiality concerns
based on legal regulations, companies might hesitate to col-
laborate due to financial fears [15], [23]. Various PPDCF
schemes are proposed enabling data holders’ collaboration
without jeopardizing their privacy.
Polat and Du [9], [24] first discuss data distribution scenar-

ios between two parties where authors introduce HDD- and
VDD-based private binary top-N recommendation schemes
to set an equilibrium among accuracy, privacy, and efficiency.
They also focus on producing numerical predictions based
on VDD [25]. Kaleli and Polat [26] discuss how to provide
binary referrals on both HDD and VDD. Yakut and Polat [27]
study a model-based distributed recommendation approach
based on singular value decomposition.
Yakut and Polat [7], [28] are the first to emerge

ADD-based numerical predictions. They also discuss binary
ratings-based ADD scenarios and propose a privacy-
preserving naïve Bayesian classifier-based solution [29].
In addition to the schemes based on two parties, researchers
also motivate on enabling collaboration of more than two
parties [8], [13], [14].
Mahony et al. [19] demonstrate the possibility of

manipulating outputs of a CF system through the insertion
of fake user profiles. Since then, several studies are focusing
on attacking strategies, analyzing the robustness of existing
CF systems, detection techniques to prevent attacks, and
developing robust algorithms that are intrinsically resistant to
attacks [17], [30]. In our previous work, we demonstrated that
PPDCF algorithms running on ADD are severely vulnerable
to shilling attacks [22]. Therefore, to employ ADD based
solutions without robustness concerns, it is crucial to develop
techniques for detecting shilling profiles on ADD.
Detection of shilling profiles can be performed using

some methods, such as statistical techniques, classification,
unsupervised clustering, and variable selection [18]. For the
sake of clarity and relevance to the current study, we focus on
detection by classification techniques. In these approaches,
attack detection is considered as a classification/ranking
problem trying to discriminate Attack profiles from Authentic
ones based on detection attributes calculated for each pro-
file. Burke et al. [31], [32] introduce a set of classification
attributes based on expected characteristics of attack pro-
files, including generic and model-specific attributes, several
of which is extended from attributes proposed initially in [33].
Mobasher et al. [34] introduce two more classification
attributes that are particularly effective at detecting segment
attacks. Also, Williams and Mobasher [35] examine the com-
bined effects of proposed additional attributes with the exist-
ing ones. What efficacy of proposed classification attributes
for attack detection is evaluated via well-known supervised
classification algorithms, e.g., simple nearest-neighbor clas-
sification, decision-tree learning using C4.5, and Support
Vector Machine (SVM) [21], [31], [32], [34]–[36]. Later,
He et al. [37] classify and detect shilling attack profiles

using rough set theory. Zhang and Zhou [38] apply ensemble
learning approach in attack detection where the underlying
idea is to improve predictive ability based on relearning
existing knowledge. They proposed a meta-learning-based
detection algorithm, which contains two training phases (i.e.,
base-level training andmeta-level training), using SVMas the
primary learning method. This method can efficiently detect
profile injection attacks; however, it yields low precision
for particularly small attack sizes. Zhang and Zhou [39] also
propose an online method, namely HHT-SVM, for attack
detection based on Hilbert-Huang transform (HHT) and
SVM. The crucial point of the algorithm is HHT-based
feature extraction method. To improve the success of attack
detection, Morid et al. [40] applied a k-NN supervised clas-
sification method on influential users, instead of the whole
user set. Zhang and Zhou [41] propose an ensemble detec-
tion model (EDM) by introducing backpropagation neural
network and ensemble learning technique to detect profile
injection attacks through selecting and integrating parts of
the base classifiers using voting strategy. In another work,
Zhang and Chen [42] illustrate the effectiveness of ensem-
ble method for detecting shilling attacks based on ordered
item sequences (EMDSA-OIS), which use simple majority
voting strategy to combine the predictive results of multiple
C4.5-based classifiers.
Although there are a few PPDCF algorithms on ADD that

are proposed to enable collaboration of service providers
to produce more accurate recommendations while preserv-
ing their privacy, they are shown to be too vulnerable to
shilling attacks [22]. It is demonstrated that attackers being
aware of the collaboration can insert distributed versions of
various attack models, hence, manipulate outcomes of the
state-of-the-art ADD-based PPCF schemes on their favor.
On the other hand, proposed detection methods are designed
for central data-based recommender systems and cannot be
employed directly on ADD due to both structures of data and
privacy concerns of data holders. In this study, we focus on
computing classification attributes on ADD without jeopar-
dizing data owners’ privacy. Furthermore, we establish that
even if parties run their own detection mechanisms, they are
not able to detect distributed attacks, which makes collabora-
tion mandatory.

III. BACKGROUND
A. ARBITRARILY DISTRIBUTED DATA
Jagannathan and Wright [16] introduce the idea of ADD and
explain that there is not a straight-forward pattern of how
preference data are distributed between two parties. In ADD
model, two vendors combine their preference collections so
that the aggregate holds the shared set of users and items in
each of their datasets along with the ratings for these items.
It is assumed that each rating belongs to either one of the par-
ties and there are no overlapping votes [7]. Fig. 1 illustrates
theADDmodel set up between online vendorsA andB, where
black and striped cells in A’s and B’s datasets, respectively
denote submitted votes and white cells the unrated items.
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FIGURE 1. Arbitrarily distributed data model [22].

As can be followed in Fig. 1, votes given by same users inA
and B to the set of common items formADD between A and B
under the assumption that there are no overlapping ratings
between parties. The assumption implies a user can vote an
item either in A or B, but not in both. Hence, ADD between
A andB holds aggregated votes of intersecting users and items
between datasets of A and B. Since it is not practical for a
user to rate all available elements in a system, there also exist
unrated cells. Indeed, a tiny fraction of cells in ADD contains
a vote, which makes collaboration essential in the first place.
ADD fits on real-world settings better than horizontal and
vertical partitioning do. Produced protocols for ADD can be
put into practical use for horizontal and vertical partitioning
cases, as well [16].

B. SHILLING ATTACK MODELS
A profile injection attack against a recommender system aims
to manipulate prediction outcomes of the system by inserting
a set of malicious profiles about a single targeted item [31].
In general, the intent of shilling attacks is either to include an
ordinary item in recommendation lists or to exclude an excep-
tional one. In other words, they either promote or demote a
target item maliciously where promoting push attacks aim to
increase the popularity of the target item and demoting nuke
attacks aim the opposite [30].
An attack consists of several attack profiles to be injected

into the system. The general form of an attack profile com-
prised of four disjoint sets is depicted in Fig. 2 [43]. IS is the
set of selected items with specific characteristics decided by
the attacker to make the attack profile similar to those of users
who prefer these particular group of products [35]. IS receives

FIGURE 2. General form of an attack profile [17].

votes as determined by the rating function δ, whereas for
some attack models it is empty. IF is the set of filler items
typically chosen randomly to complete the attack profile
and to make it harder to detect. IF receives votes provided
by the rating function σ . it is the single target item whose
popularity is manipulated by assigning a vote as determined
by the rating function γ . Generally, such rating is either the
maximum or minimum available vote in the system, i.e., rmax
for push attacks and rmin for nuke attacks. The remaining
items that have no rating compose the null portion of the
attack profile indicated as IØ. Characteristics of an attack
model are determined by the strategy used for identifying IS
and IF , and the way the ratings are assigned to each of these
sets including the target item, thus the rating functions δ, σ , γ .

In order to perform an attack, the attacker needs some
information about the targeted system such as used recom-
mendation algorithm and number of users/items [44]. While
a high-knowledge attack requires a detailed information
about the ratings distribution in the dataset, a low-knowledge
attack requires system-independent information [21]. This
study focuses detecting six popular and well-known shilling
attack strategies; namely Random, Average, Bandwagon,
Segment, Reverse Bandwagon, and Love/Hate attacks [30],
[43], [45]–[47]. Attack profile generation guidelines for these
attack types are summarized in Table 1 [22], [46].

C. CLASSIFICATION ATTRIBUTES FOR SHILLING ATTACK
DETECTION
In classification-based shilling attack detection methods,
classification attributes come in three diversities: generic,
model-specific, and intra-profile. Generic attributes are the
basic descriptive statistical features that try to capture the
characteristics that make an attacker’s profile look different
from an official user profile. Attack model-specific attributes
are generated to detect the features of a profile mainly associ-
ated with a specific attack model. Different from generic and
model-specific attributes, intra-profile attributes concentrate
on intra-profile statistics, in turn, they are designed to detect
concentrations across profiles. The details of these classifica-
tion attributes can be found in the following subsections based
on the works in [21], [31], [32], [35], [36], [48], and [49].
Table 2 summarizes notations take part in the formulas of the
attributes that were used throughout the paper.
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TABLE 1. Attack profile summary [22].

TABLE 2. Notations.

1) GENERIC ATTRIBUTES
The underlying assumption behind generic attributes is that
the overall statistical signature of an attack profile will
diverge significantly from that of an authentic profile. The
rating assigned to the target item and the distribution of
ratings among the filler items are the informers that cause
such difference [21]. As many researchers have postulated
[33], [44], [50], [51], it is improbable for an attacker to
have complete knowledge of the ratings in a real system.
Thus, profiles generated by malicious users often differ from
rating patterns of authentic users. That is why an attribute
that captures these irregularities can be descriptive in detect-
ing attack profiles. There are a number of generic attributes
[Rating Deviation fromMean Agreement (RDMA), Weighted
Degree of Agreement (WDA), Weighted Deviation from
Mean Agreement (WDMA), Degree of Similarity with Top
Neighbors (DegSim), Degree of Similarity with Co-Rated
Factor (DegSim′) and Length Variance (LengthVar)] pro-
posed in the literature for shilling profile classification, whose
equations are given in Table 3.

2) MODEL-SPECIFIC ATTRIBUTES
In [31] and [34], researchers have shown that when the
profiles contain fewer filler items, generic attributes are
insufficient to distinguish a true attack profile from eccen-
tric, but authentic profiles, which results in significant false
positive rate in classification. In order to reduce the

TABLE 3. Equations for generic attributes.

success of the attacks, in addition to generic attributes,
Williams et al. [49] proposed the use of model-specific
attributes, which are based on partitioning each user profile
somehow to maximize it’s similarity to one created by a
particular attack model. This partitioning can be modeled
by splitting each user profile into three sets. The set Pu,T
contains all the items in user u’s profile that is suspected to be
targeted. According to the intent of the attack, alleged target
items are the items that get either the profile’s maximum
rating (rmax for push attack), or the profile’s minimum rating
(rmin for nuke attack). The setPu,F contains all other ratings in
user u’s profile that is suspected to be filler items. The unrated
items in user u’s profile form the set Pu,Ø. The purpose is
for Pu,T to approximate {it } ∪ IS , for Pu,F to approximate IF ,
and Pu,Ø will be equal to IØ. Hence, the statistical features
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TABLE 4. Equations for average attack model-specific attributes.

of these partitions can be used for generating the model-
specific detection attributes. Reference [49] introduced sev-
eral measures for detecting the distinctive signatures of attack
models.

• Average Attack Model-Specific Attributes [35]:

According to the definition of average attack, each filler
item will get ratings around the own mean of that filler item.
In this case, optimal partitioning, which is the one where the
mean-variance is minimized, is constituted through iterations
over the items with extreme ratings. Let Pu be the profile
of user u, and Pu,target be the set of potential target items
in Pu, which are given the rating rmax (or rmin according to the
intend of the attack). Mean Variance (MeanVar) metric will
be computed for each possible target item (ptarget ) from the set
Pu,target iteratively by taking one of them as suspected target,
and assigning rest of the rated items as filler items.MeanVar
metric is calculated as in Eq. 7, where

∣∣Pu − Pu,Ø
∣∣ − 1

describes the number of rated items in user profile Pu, which
is actually the size of the filler item set,

∣∣Pu,F ∣∣.
Among the calculated MeanVar(u, ptarget ) values,

whichever yields the lowest value will be considered as
the optimal partitioning, and ptarget item that generates this
minimum value will be selected as the target item t . Later,
the Pu,T , and Pu,F sets determined by this optimal partition-
ing will be used to create the following attributes: (1) Filler
Mean Variance (FMV) is the minimum MeanVar(u, ptarget )
value that gives the optimal partitioning calculated in Eq. 7,
(2) Filler Mean Difference (FMD) is the average of the
absolute value of the difference between the user’s rating,
and the mean rating for the filler items calculated as in Eq. 8,
and (3) Profile Variance (ProfileVar) that captures the within-
profile variance calculated as in Eq. 9.

• Random Attack Model-Specific Attributes [32]:

Similar to average attack, the random attack is also a
partitioning attack with the target partition being a single
rating. However, unlike average attack, the filler items are
assigned values generated randomly within the rating scale

with a distribution centered around the mean for all user
ratings across all items. Reference [35] proposed to use the
correlation between a profile and the rating average for each
item as a metric to discriminate random attackers. Hence,
for random attack, the optimal partitioning is the one that
gives the minimum correlation. The ptarget item, which gives
this minimum correlation is selected as the most likely target
t , or as the partitioning set Pu,T , and all other rated items
in Pu forms the set Pu,F . Obtained minimum correlation is
called the Filler Average Correlation (FAC), and used as
a classification attribute in detecting random attackers. The
other classification feature used in random attack detection is
the FMD attribute [32], which is calculated as in Eq. 8 based
on the discovered optimal partitioning sets Pu,T , and Pu,F for
random attack.

• Group Attack Model-Specific Attributes [49]:

Group attack attributes are proposed for detecting attacks
that aim to increase the distinction of a targeted group of
items (it ∪ IS ), and the filler items (IF ), like the band-
wagon and segment attack models. Therefore, the parti-
tioning of the group attack model is done differently from
the average and random attacks. In this model, all items
in Pu that are given the maximum rating, rmax , (or the
minimum rating, rmin, for nuke attack) in user u’s profile
are placed in the target partition, Pu,T , and all other rated
items in Pu form the set Pu,F , which is the filler partition.
Model-specific attributes for detecting both the bandwagon
and segment attack models are calculated based on this
partitioning.

Pu,T = {
i ∈ Pu, suchthatru,i = rmax

}
Pu,F = Pu − (Pu,T ∪ Pu,Ø) (10)

For bandwagon attacks, investigation of the filler ratings is
identical to the random attack model. As in random attack,
FAC and FMD attributes are generated, but in this case,
the partitions given in Eq. 10 are used in calculations.
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For segment attacks, Filler Mean Target Difference
(FMTD) attribute, which intends to capture the difference
between the average of the ratings in the target partition and
the average of the ratings in the filler partition, is introduced.
This feature is computed as follows:

FMTD =

∣∣∣∣∣∣∣
⎛
⎜⎝

∑
i∈Pu,T

ru,i∣∣Pu,T ∣∣
⎞
⎟⎠ −

⎛
⎜⎝

∑
k∈Pu,F

ru,k∣∣Pu,F ∣∣
⎞
⎟⎠
∣∣∣∣∣∣∣ (11)

where i is from the set Pu,T , ru,i is the rating given by user
u to item i, and

∣∣Pu,T ∣∣ is the number of ratings in the target
partition Pu,T . Similarly, k is from the set Pu,F , ru,k is the
rating given by user u to item k , and

∣∣Pu,F ∣∣ is the number of
ratings in the filler partition Pu,F . The overall average FMTD
calculated among all user profiles is then subtracted from
FMTD as a normalizing factor.
Group Filler Mean-Variance (GFMV) is another attribute

used for detecting segment attacks. GFMV is the variance of
the filler items identified by the group attack partitioning, and
is calculated as follows:

GFMV =

∑
i∈Pu,F

(
ru,i − ri

)2
∣∣Pu,F ∣∣ (12)

where Pu,F is the set of items in the profile of user u
that have been partitioned as filler items, ru,i is the rating
user u has given to item i, ri is the average rating of item i
across all users, and

∣∣Pu,F ∣∣ is the number of ratings in the
set Pu,F .

3) INTRA-PROFILE ATTRIBUTES
All of the classification attributes mentioned so far have
concentrated on inter-profile statistics, which consider char-
acteristics within a single profile [49]. In fact, a single profile
cannot effect a recommender system significantly. Hence,
the attackers need to inject multiple shilling profiles to cause
a significant bias [35].Williams et al. [36] introduced the Tar-
get Model Focus (TMF) attribute focusing on statistics across
profiles, specifically concentrated on intra-profile statistics.
Most probably, when a system is attacked, there will be
several attack profiles that target the same item. Hence, TMF
examines the density of target items. Since the partition-
ing associated with the model-specific attributes described
above identifies the set of suspected targets for each user
profile, using these partitions the TMF attribute calculates
the degree to which the partitioning of a given user profile
focuses on items common to other attack partitions, and
thus measures a consensus of suspicion regarding each user
profile [21].
In order to calculate TMF for a given user profile, Fi,

the degree of focus on a given item is defined. Then, among
the target set of a user profile, the item that has the highest
focus is selected, and its focus value is used as a classification
attribute. TMF of a user profile u is estimated as given

in Eq. 13.

TMF = max
j∈PT

Fj, where

Fi =
∑
u∈U

�u,i∑
u∈U

∣∣Pu,T ∣∣ , and

�u,i =
{
1, if i ∈ Pu,T
0, otherwise

(13)

D. PRIVACY PROTECTION
Several privacy protection methods are introduced to achieve
privacy in CF systems [15]. Among all, Randomization
and Cryptographic techniques are the two most common
approaches. In the following subsections, we first describe
the methods utilized for preserving privacy, and then give the
definition and analysis of privacy within the scope of this
study.

1) UTILIZED METHODS
In this study, proposed private protocols utilize random fill-
ing (RF) method and Homomorphic Encryption (HE) [15].
Randomization is a privacy protection technique used for
hiding or masking confidential data. Such methods aim at
preserving privacy either by perturbing original ratings or
by masking unrated items. Therefore, in order to disguise
unrated items, RF method is employed [15] where collabo-
rating companies selectively or uniformly randomly choose
a number of their unrated items and fill them with unreal
or default ratings. There are several options for generating
such ratings, such as filling the unrated items with random
numbers [52], or employing personalized ratings like user-
mean and item-mean [7], [8].
Before initiating collaboration, the parties mask their part

of data to protect the confidentiality of their data sets. For
such purpose, parties make use of the method proposed by [7]
for ADD, explained as follows:
1) Each part determines the density of users’ in their own

databases, which is the number of rated items in a user
profile.

2) Parts uniformly randomly choose a value, θ , over the
range (1, β), where β is an experimental parameter
indicating the density ratio.

3) Each part uniformly randomly selects θ percent of their
empty cells, where θ is determined as stated by [7].

4) Parts fill such cells with unreal ratings and obtain their
masked databases. Unreal ratings can be determined by
following one of the strategies specified by [7].

Secure two-party computation enables two parties to
jointly compute any function on their inputs without
divulging to either party anything more than the correct out-
put [53]. HE is a form of encryption that allows computation
on ciphertexts while preserving the features of the function
and format of the encrypted data [54]. As an example, for
addition operation, suppose that ξ is an encryption function,
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K is a public key, and plain-texts, x and y, are the private
data values that will be encrypted. Hence, HE enables to
compute ξK (x + y) by using ξK (x) and ξK (y) without
knowing x and y explicitly. In literature, most of the HE
schemes operate on integer numbers. On the other hand, since
there is a need for secure computations on floating-point
numbers, there are a few HE schemes working on floating
point numbers, as well. In this study, we employ Paillier cryp-
tosystem [55] for addition operation of encrypted data and
multiplication of an encrypted value with a constant. Also, for
integer division a protocol proposed by Dahl et al. [56] is uti-
lized. Finally, to perform floating-point-based calculations,
floating-point homomorphic encryption (FPHE) scheme
proposed by Cheon et al. [57] is used.

2) PRIVACY ANALYSIS
Privacy is a concept that is hard to define precisely, and it is
complicated to specify its certain boundaries. In the context of
CF, it has variousmeanings according to different viewpoints.
In this study, privacy is defined as follows: The parties should
not be able to learn the actual rating values and the rated
and/or unrated items held by each other during collaborative
work. Actual rating values are the opinions of the users on
commercial products, and they can be used for profiling
the customers. Hence, actual rating values and the list of
rated items are considered confidential. E-companies are not
willing to disclose their confidential data to others while per-
forming collaborative tasks. Different from the actual rating
values and the list of rated items held by a company, user
and item IDs are regarded as public data. Thus sharing them
would not contravene privacy.
Moreover, collaborative companies are assumed to be

semi-honest, which means that they correctly apply the pro-
tocols, but they may try to gather as much private data as
possible by resolving the inputs and outputs. Consequently,
proposed protocols should enable cooperative work on ADD
within boundaries of the specified confidentiality constraints.
In the RF method, data holders insert unreal ratings into

their users’ vectors. Thus, the privacy level of RF depends
on how precisely the collaborating parties can guess the
number of actual ratings and unreal ones in a user vector.
Note that, in the proposed protocols, instead of a specific
value in a user’s vector, only aggregated computation results
are exchanged between parties, which avoids occupation
of actual rating values. On the other hand, if we assume
that any particular user’s masked rating vector is disclosed,
attained privacy level can be estimated as stated by [7].
The probability of guessing the correct θ value is 1-out-
of-β and probability of acquiring β is 1-out-of-100. The
probability of guessing the exact positions of filled cells in
a vector is C

rf
ra , i.e.,

rf !
rf !(ra−rf )! where rf represents the number

of fake ratings and ra shows all actual values send by the
data holder. Consequently, the probability of guessing the

set of rated items is
(
100 × β × C

rf
ra

)−1
. The other utilized

privacy method depends on HE, and according to proposed

studies [55]–[57], the schemes are semantically secure for
inference of input values.

IV. PRIVATE PROTOCOLS FOR ATTACK
DETECTION ON ADD
In this section, we firstly describe the general data configu-
ration structure, and then the steps in deriving the required
classification attributes privately between two data holders.
Then, we define the Revised Private Mean Estimation proto-
col that computes some essential primitive values, which are
compulsory in the calculation of the classification attributes.
Finally, we describe the private protocols that are built up to
derive the required generic and model-specific classification
attributes for each distributed profile collaboratively between
two data holders.

A. DATA CONFIGURATION AND MODELLING
In ADD configuration, the ratings given by a user are indis-
criminately distributed between two parties, which means
while one party (PartA) has some fraction of the ratings,
the other party (PartB) holds the remaining ones. In order to
calculate basic primitives and classification attributes neces-
sary for attack detection, they tend to agree on collaboration
in certain conditions where they keep their confidentiality
preserved. Since distributed computations require data shar-
ing between the parties, the critical issue is to exchange as few
as possible amounts of data. Therefore, such a collaboration
scheme should not violate their data privacy and should force
parties to keep the collaboration by depriving the other to
obtain all the necessary information.
For this reason, parties agree to collaborate on specific

terms where they each hold some part of the calculation
results. These terms define which auxiliary part of any cal-
culation will be held at any party, and should be in the form
of sharing this information half-and-half. Therefore, such a
sharing scheme allows each party to make calculations on
their part and have their partial half of the result, which are
then combined to construct the final result. We characterize
this sharing scheme by representing partial calculations of
these parties as even and odd parts. Thus, while one party
holds partial calculation of a primitive or attribute obtained
through even-indexed entities, the other one obtains for the
odd-indexed ones. Note that, parties should agree on index
of users while constructing ADD before collaboration. Also,
remember that such representation of even- and odd-indexed
partial calculations is arbitrary, and one could also use any
other scheme to symbolize two mutually exclusive parts of a
calculation.

B. REVISED PRIVATE MEAN ESTIMATION PROTOCOL
After masking their databases with unreal ratings, parts need
to calculate the classification attributes necessary for shilling
attack detection by collaborating. However, in order to calcu-
late some of these classification attributes, a number of basic
primitives, which are the crucial values in some essential
calculations, namely the mean rating of a user and an item,
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or the total number of ratings in the system provided by a
user and for an item, need to be known.
In general, arithmetic mean can be computed as the sum

of all the numbers in the series divided by the size of the
series. Hence,mean = sum/count is an example of algebraic
measure that can be calculated by applying division operation
to distributive measures sum and count. More specifically,
sum and count can be computed by partitioning the data into
smaller sets, computing partial measures for each subset, and
finally merging them to obtain the final result [7].
Following this strategy, the mean rating provided for any

item i, represented as ri, can be computed in a distributive
manner between PartA and PartB as follows:

ri =
∑

u∈Ui ru,i
|Ui| =

∑
u∈UA

i
ru,i + ∑

u∈UB
i
ru,i

|Ui|A + |Ui|B

= ItemSumA + ItemSumB

ItemCountA + ItemCountB
(14)

where UA
i and UB

i represent user ratings residing in both
parties, where UA

i ∪ UB
i = Ui.

Similarly, the mean of votes provided by user u for all
items, represented as vu, can be computed in a distributive

manner between PartA and PartB as follows:

vu =
∑

j∈Iu vu,j
|Iu| =

∑
j∈IAu vu,j +

∑
j∈IBu vu,j

|Iu|A + |Iu|B

= UserSumA + UserSumB

UserCountA + UserCountB
(15)

where vu,j is the vote given by user u to item j ∈ Iu, IAu and IBu
represent votes residing in both parts, where IAu ∪ IBu = Iu.
As can be followed in Eq. 14 and Eq. 15, calculation of

both user- and item-mean values are performed in a sim-
ilar manner. Relying on this, we revise the Private Mean
Estimation protocol [7] originally designed for estimating
the user-average votes on ADD, to calculate both user- and
item-mean values. Moreover, with some additional steps,
it becomes possible to store some intermediate count values,
which are necessary for the calculation of the classification
attributes.
Employing the following protocol, the parties can estimate

ri(i = 1, 2, . . . , n) and vu(u = 1, 2, . . . ,m) values for all
items and users in a distributive manner.
1) Both parties compute all partial sum and count values

for all items and users based on their own databases.

TABLE 5. Distributed formulation of RDMA, WDMA, and WDA attributes.
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2) PartA and PartB exchange odd- and even-indexed esti-
mated sub-aggregates of their halves, respectively.

3) Both parties estimate user- and item-mean values for
odd- or even-indexed users and items by performing the
following steps:
a) Each party calculates sum and count values for

odd- or even-indexed users and items. Hence,
PartA and PartB respectively holds even and odd
partials of UserSum, ItemSum, UserCount , and
ItemCount values.

b) Both parties store partial UserCount , and
ItemCount values to be used in the rest of the
protocols.

c) PartA estimates the user- and item-mean ratings
with even indices, i.e., vueven and rieven , while PartB
with odd indices, i.e., vuodd and riodd .

4) Parts exchange the estimated user- and item-mean val-
ues. Hence, at the end of the protocol, each part ends
up with vu and ri values.

Following the Revised Private Mean Estimation protocol,
each part only sends computation results for even- or odd-
indexed entities. Therefore, the companies cannot figure out
the actual values and summation of the ratings during the
protocol [7].
In the end, each part will have the following informa-

tion: Both PartA and PartB learn vu values for all users and
ri values for all items. In addition, PartA stores |Ui|even and
|Iu|even, while PartB stores |Ui|odd and |Iu|odd to be used in
the calculation of the classification attributes necessary for
shilling attack detection.

C. PRIVATE ESTIMATION OF RDMA, WDMA, AND
WDA ATTRIBUTES
Examining the formulation of RDMA, WDA, and WDMA
attributes given in Eq. 1, Eq. 2, and Eq. 3, note that calculation
of WDA and WDMA attributes are very similar, and RDMA
attribute can be calculated after obtaining WDA and dividing
by |Iu|. Distributed formulations for these attributes are given
in Eq. 16, Eq. 17, and Eq. 19. However, parties only hold
partial data and share either even or odd parts of computations
with each other. Keeping this in mind, parties can privately
compute RDMA,WDA, andWDMA attributes in a distributed
manner in a single protocol, as follows:
1) Each party calculates |ru,i − ri| values by themselves.
2) Having |Ui|even values, PartA computes WDAAeven

and WDMAAeven values for each user. Similarly, hav-
ing |Ui|odd values, PartB computes WDABodd and
WDMABodd values.

3) Parties collaborate to calculate the remaining partial
sum values as follows.
a) PartA encrypts |ru,i − ri| values for the odd-

indexed items on her side, and sends these
encrypted values to PartB.

b) PartB gets 1/|Ui|odd and 1/|Ui|2odd expo-
nent of the encrypted values as shown in

Eq. 21 and Eq. 22.

ξK
(∣∣ru,i − ri

∣∣)1/|Ui|odd mod n2
≡ ξK

(∣∣ru,i − ri
∣∣ ∗ 1

|Ui|odd
)
mod n

= ξK

(∣∣ru,i − ri
∣∣

|Ui|odd

)
(21)

ξK
(∣∣ru,i − ri

∣∣)1/|Ui|2odd mod n2
≡ ξK

(∣∣ru,i − ri
∣∣ ∗ 1

|Ui|2odd

)
mod n

= ξK

(∣∣ru,i − ri
∣∣

|Ui|2odd

)
(22)

c) Having the encrypted ξK

( |ru,i−ri|
|Ui|odd

)
, and

ξK

( |ru,i−ri|
|Ui|2odd

)
values of each user, PartB multi-

plies these encrypted values to obtain their sum in

encrypted form, which are ξK

(∑|Iu|Aodd
i=0

|ru,i−ri|
|Ui|odd

)

and ξK

(∑|Iu|Aodd
i=0

|ru,i−ri|
|Ui|2odd

)
values, respectively,

and sends them back to PartA.
d) PartA decrypts them, and obtains WDAAodd and

WDMAAodd values. Besides, adds these values to
the partial sum values obtained for the even-
indexed items in Step 2. Hence, PartA computes
WDAA value by adding WDAAeven and WDAAodd ,
and WDMAA value by adding WDMAAeven and
WDMAAodd .

4) By switching roles between the parts, Steps 3a-3d are
repeated once more to compute WDAB and WDMAB.

5) PartA sendsWDAA andWDMAA values of odd-indexed
users to PartB, and PartB sends WDAB and WDMAB

values of even-indexed users to PartA.
6) By applying the followings, even-indexed users’ WDA

and WDMA attributes are known by PartA (WDAeven,
WDMAeven), and odd-indexed users’WDA andWDMA
attributes are known by PartB (WDAodd , WDMAodd ).
a) PartA sums up WDAA values that she has for

the even-indexed users with the WDAB values
that PartB sent in Step 5 to obtain WDA values
of even-indexed users. Similarly, PartB obtains
WDA values of odd-indexed users.

b) The numerator of the WDMA attribute is com-
puted in the same manner. PartA sums up
WDMAA values she has for the even-indexed
users with the WDMAB values PartB sent to
obtain the numerator of the WDMA attribute of
even-indexed users. In a similar manner, PartB
obtains the numerator of the WDMA attribute of
odd-indexed users. According to the formula of
the WDMA attribute, the numerator should be
divided by |Iu|. Thus, each party can compute
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the WDMA attribute for their part. By know-
ing the numerator of the WDMA attribute of the
even-indexed users, and the |Iu|even value, PartA
computes WDMAeven. Similarly, PartB computes
WDMAodd .

7) Each part computes RDMA attribute for half of the
users by themselves. PartA calculates RDMAeven for
the even-indexed users by dividingWDAeven by |Iu|even.
Likewise, PartB calculates RDMAodd . Thus, at the
end of this step, even-indexed users’ RDMA attributes
are known by PartA, and odd indexed users’ RDMA
attributes are known by PartB.

D. PRIVATE ESTIMATION OF DEGSIM ATTRIBUTE
DegSim attribute is based on the average similarity of a
profile’s top-k nearest neighbors. In order to calculate this
attribute, as a first step, similarity values between a user
and the remaining users need to be calculated. Then, from
these similarity values, the highest k of them are chosen.
For similarity computation, the Private Similarity Compu-
tation (PrivateSims) protocol proposed by [58], which is
originally designed for distributed calculation of Pearson’
correlation coefficient on ADD between two parties without
jeopardizing privacy, is employed.
The proposed protocol for distributed calculation of

DegSim attribute is as follows:
1) Each party computes their half of the similarities by

applying the PrivateSims protocol, and among these
similarity values locates the partial highest k of them.

2) Parties initiate collaboration to calculate DegSim
attribute. For even-indexed users:
a) PartB sends partial k highest similarity values to

PartA.
b) PartA merges these similarity values with the

ones she owns.
c) Among all, PartA chooses the highest k , adds

them up, and divides the sum by k to obtain the
DegSim attribute.

3) By switching roles, Steps 2a-2c are repeated for
the remaining users. Hence, DegSim attribute of the
odd-indexed users are obtained by PartB. At the end of
the protocol, each part will have DegSim attribute for
half of the users.

Different from DegSim attribute, DegSim′ attribute given
in Eq. 5, takes into account the number of co-rated items
between two users. However, finding co-rated items of two
users whose ratings are distributed between two parts is
costly. Besides, such calculation might disrupt privacy, too.
Therefore, we do not utilize this attribute since privacy is the
main concern.

E. PRIVATE ESTIMATION OF LENGTHVAR ATTRIBUTE
At the end of the Revised Private Mean Estimation proto-
col, PartA and PartB learns the number of ratings given by
the even- and odd-indexed users, respectively. In order to

calculate the LengthVar attribute, the average number of
ratings per user, i.e.,U ) value in Eq. 6 should be distributively
computed as given in Eq. 23.

U =

n∑
u=0

|Iu|
n

=
∑

u∈Ueven |Iu| + ∑
u∈Uodd |Iu|

n

= counteven + countodd
n

(23)

1) Each party calculates total number of ratings in their
databases for even- or odd-indexed users by adding up
rating counts.

2) PartA sends the total number of ratings for even-
indexed users to PartB, and PartB sends the count for
odd-indexed users to PartA.

3) Adding the count values, counteven + countodd , and
dividing this sum to n, each part computes theU value.

4) PartA calculates
∣∣|Iu|even − U

∣∣ difference for even-
indexed users, likewise, PartB calculates

∣∣|Iu|odd − U
∣∣

for odd-indexed users.
5) According to Eq. 6,

∣∣|Iu| − U
∣∣ difference needs to

be divided by
∑n

u=0
(|Iu| − U

)2
. This denominator

can be calculated partially by each part. Thus,
PartA calculates the partial sum for even-indexed
users (

∑Ueven
u=0

(|Iu| − U
)2
), and PartB calculates the

partial sum for odd-indexed users.
6) Parts exchange the partial sum values. By adding them

to their partial sum values, each part finds the denomi-
nator of the LengthVar attribute (

∑n
u=0

(|Iu| − U
)2
).

7) By dividing the absolute differences calculated in
Step 4 to the denominator of the LengthVar attribute,
PartA computes the LengthVar attribute of the
even-indexed users, and PartB for the odd-indexed
users.

F. PRIVATE ESTIMATION OF AVERAGE ATTACK
MODEL-SPECIFIC ATTRIBUTES
To find the average attack model-specific attributes, namely
FMV , FMD, and ProfileVar , described in Section III-C2,
the optimal partitioning where the mean-variance is
minimized needs to be discovered first.
Since each user profile is distributed between the par-

ties, each part can construct the set of possible target items
(PAu,T for PartA and PBu,T for PartB) by checking voted items
rated by either maximum rating, rmax , or minimum rating,
rmin, according to the intent of the attack. Then, in order to
find the optimal partitioning, each part needs to calculate the
MeanVar

(
u, ptarget

)
attribute iteratively for each of the items

in their possible target item sets. Through Revised Private
Mean Estimation protocol, both parts know the average rating
for each item, ri values. According to Eq. 7, parts need to
calculate the square of the difference of the filler ratings,
however, these filler ratings are distributed between parts.
Hence, Eq. 7 can be calculated in a distributed manner as
shown in Eq. 6.
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TABLE 6. Distributed formulation of average attack model-specific attributes.

More specifically, for calculating the MeanVar values of
the possible target items in PAu,T , PartA can consider all the
rated items in PartB along with the ones that were rated in
her side, except the chosen target item, as her filler item
set, PAu,F ; and similarly PartB can consider all the rated
items in PartA along with her PBu,F set as her filler items in
calculating the MeanVar values of the possible target items
in PBu,T . Hence, by looking at all of their rated items, parts
can compute

∑
i∈Pu,F (ru,i − ri)2 value, and send this partial

value to the other part. Iterating through the possible target
item sets, each part now can calculate the numerator of the
MeanVar

(
u, ptarget

)
values for their part. Although only the

numerator of theMeanVar
(
u, ptarget

)
values are known, since

the denominator is same for all, the minimum numerator
value will also be the minimumMeanVar value for that part.
Among the two values computed for each part, the minimum
one will give the optimal partitioning for user u.

So far, the part that optimal partitioning relies is known.
However, actualMeanVar attribute is not calculated yet, only
the numerator is obtained. To calculate the MeanVar value,
this numerator should be divided by the size of the filler
items,

∣∣∣PAu,F ∣∣∣ +
∣∣∣PBu,F ∣∣∣, which is one less than |Iu| value cal-

culated by the Private Mean Estimation protocol, indicating
the target item. However, at the end of the Private Mean
Estimation protocol, PartA knows |Iu|even, and PartB knows
|Iu|odd . Depending on whether the part having the optimal
partitioning has the corresponding |Iu| value of the active
user or not, either part can calculate the FMV attribute for
each user by herself, or send the numerator for letting the
other part to compute the attribute.
FMD and ProfileVar are the other attributes that need to be

computed based on the optimal partitioning. These attributes
can also be computed in a distributed manner while calculat-
ing the FMV attribute of any user. Eq. 8 can be calculated
in a distributed manner as shown in Eq. 25. In calculating
ProfileVar , unlike FMD and MeanVar , the possible target
item is also taken into consideration. Therefore, i ∈ Pu,T ∪
Pu,F is the same as i ∈ Pu−Pu,Ø. Hereafter,

∣∣Pu,T ∪ Pu,F
∣∣ in

the denominator is actually equals to
∣∣Pu,F ∣∣ + ∣∣Pu,T ∣∣. Since,∣∣Pu,T ∣∣ is 1, it turns out to be ∣∣Pu,F ∣∣+ 1, which is equal to |Iu|

value. Hence, Eq. 9 can be written in a distributed manner as
shown in Eq. 26.
Parties can compute FMV , FMD and ProfileVar attributes

privately and in a distributed manner with a single protocol.
For each user u the following steps will be performed:

1) Each part creates their possible target item set by exam-
ining user u’s partial profile that they have. Hence,
PartA constructs PAu,T , and PartB constructs PBu,T .

2) Parts compute
∑

i∈Pu,F (ru,i − ri)2 value by consider-
ing all the rated items they have for their part, and
exchange these values with each other. Thus, PartA
computes

∑
i∈PAu,F (r

A
u,i − ri)2 value, let us name it as

MeanVarNumeratorA, and sends it to PartB. Similarly,
PartB computes MeanVarNumeratorB, and sends to
PartA.

3) Iterating through the possible target item set, each part
calculates the numerator of the MeanVar

(
u, ptarget

)
values in their part.

a) For each element in PAu,T , PartA treats it as a
suspected target item, and finds the numerator of
the MeanVar

(
u, ptarget

)
values.

i) Construct the PAu,F , which is the rest of the
rated items in user u’s profile owned by PartA
plus the ones in PartB.

ii) Calculate
∑

i∈PAu,F (r
A
u,i − ri)2, which is the

MeanVarNumeratorA value for the corre-
sponding suspected target item.

iii) Add the obtained MeanVarNumeratorA to
MeanVarNumeratorB value that PartB sent
in Step 2 to calculate the numerator of the
MeanVar

(
u, ptarget

)
value of the suspected

target item.

b) Among the calculated values choose the min-
imum one as the partially optimal partitioning
according to PartA.
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4) Similarly, by switching sides and following
Steps 3a-3b, PartB learns the partially optimal parti-
tioning for her part.

5) Parts exchange these minimum values, and both learn
whether the optimal partitioning is on their part or not.
The part that has the optimal partitioning increases
the TMF value of the target item, which gives this
partitioning, by 1.

6) FMV , FMD and ProfileVar attributes are computed.

• If optimal partitioning is in the part who knows the
|Iu| value of the user:
a) Part calculates the FMV attribute by herself.
b) For calculating FMD attribute, the other part

calculates
∑

i∈Pu,F
∣∣ru,i − ri

∣∣ partial value for
her filler item set, which include all the items
that have rating on that particular part, and
sends such value. The part having optimal par-
titioning, calculates her partial sum value for
her filler item set, which include all the items
that have rating on that particular part, except
the target item. Then, adds up these partial
sums, and divides the sum by |Iu| − 1 to obtain
the FMD attribute.

c) For calculating ProfileVar attribute, the other
part calculates

∑
i∈Pu,T∪Pu,F (ru,i − vu)2 partial

value for all the rated items that she has, and
sends this value. The part having the optimal
partitioning similarly calculates a partial sum
value on all the rated items in her part, includ-
ing the target item. Then, adds up these partial
sums, and then divides by |Iu| to obtain the
ProfileVar attribute.

• If the optimal partitioning is in one part, but the |Iu|
value is known by the other part:

a) Part having the optimal partitioning sends the
numerator value she has to the other part.
Knowing the |Iu| value of the user, other part
calculates the FMV attribute for that user. This
part cannot know which item is the possible
target, but can only learn the value of the
attribute.

b) For calculating FMD and ProfileVar attributes,
Steps 6b-6c are repeated by switching the roles
between the parts.

At the end of this protocol, as well as learning the FMV
attribute, parts also learn the value of FMD, and ProfileVar
attribute for half of the users. This protocol needs to be
computed twice; once for push attack, where the set Pu,target
contains items rated by rmax , and once for nuke attacks,
where the set Pu,target contains items rated by rmin. Hence,
the corresponding attributes for nuke attacks can be computed
with the above protocol by choosing the minimum ratings of
the profile as the target set.

G. PRIVATE ESTIMATION OF BANDWAGON ATTACK
MODEL-SPECIFIC ATTRIBUTES
For bandwagon attack, FAC , and FMD attributes need to
be generated, as in random attack. However, different from
random attack, these attributes need to be computed based
on the partitioning shown in Eq. 10. Hence, all items in Pu
that are given the maximum rating, rmax , (or the minimum
rating, rmin, for nuke attack) in each user u’s profile are placed
in the target partition, Pu,T , and all other rated items form
the set Pu,F , which is the filler partition. After forming these
partitions, FAC and FMD attributes need to be calculated
privately in collaboration of both parts.
FAC attribute captures the correlation between the ratings

given to filler items and the average ratings of these items.
Since both parts know average ratings of items, this correla-
tion value can be calculated distributively between two parts,
as shown in Eq. 27.

FAC = x · y′
√
x · x′ · √y · y′

= xA · yA′ + xB · yB′
√
xA · xA′ + xB · xB′ ·

√
yA · yA′ + yB · yB′

(27)

where, xA and xB represent the vectors having ratings given to
filler items in PartA and PartB, respectively. Also, yA and yB

are the vectors containing average ratings of the correspond-
ing items, in order for PartA and PartB.
Distributed calculation of the FAC attribute given in Eq. 27

can be obtained privately for bandwagon attack model.
For each user u the following steps will be performed:
1) PartA constructs the filler item and target item sets of

user u based on her own data by herself.
a) PartA forms the set PAu,T and increases the TMF

value of these items by 1.
b) PartA forms the set PAu,F which is actually the xA

vector.
2) PartA forms yA vector, which contains the correspond-

ing item mean values of the filler items.
3) PartA calculates xA · yAT , xA · xAT , and yA · yAT .
4) Steps 1-3 are repeated by PartB.
5) For half of the users (if the user is odd-indexed), the fol-

lowing steps are performed:

a) PartA sends the value of yA · yAT to PartB.
By using yB ·yBT value that she has, PartB calcu-

lates
√
yA · yAT + yB · yBT .

b) PartB sends the value of xB · xBT to PartA.
By using xA · xAT value that she has, PartA cal-

culates
√
xA · xAT + xB · xBT . Then, encrypts it

with her key and sends encrypted result to PartA.

c) PartA gets the
√
xA · xAT + xB · xBT exponent of

the encrypted value sent by PartB in Step 5a to
obtain the encrypted value of their product, which
is the denominator of FAC .
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d) According to Eq. 27, the numerator of FAC is the
sum of xA · yA′

and xB · yB′
. However, the former

is known by PartA while latter is known by PartB.
Then, PartB sends ξK

(
xB · yB′)

to PartA.

e) PartA computes ξK

(
xA · yA′ + xB · yB′)

.
f) Now, PartA has both the numerator and the

denominator value of the FAC attribute in
encrypted form. PartA performs the division, and
sends the result to PartB.

g) PartB decrypts the result and obtains the FAC
attribute of the user.

6) By switching roles in Step 5, PartA obtains the FAC
attribute of the remaining users.

Distributed calculation of FMD attribute given in Eq. 25
can be obtained privately for bandwagon attack model as
follows:
For each user u the following steps will be performed:
1) Each part constructs the filler item and target item sets

of user u according to their data.
a) By constructing the filler sets, each part also

learns its size. Thus, PartA forms the set PAu,F and

learns
∣∣∣PAu,F ∣∣∣ and PartB forms the set PBu,F and

learns
∣∣∣PBu,F ∣∣∣.

b) Each part increases the TMF value of the items in
their target item list by 1.

2) Parts calculate the partial sum values
∑

iA∈PAu,F
∣∣∣rAu,i−ri∣∣∣

and
∑

iB∈PBu,F
∣∣∣rBu,i − ri

∣∣∣ based on their own filler item
sets.

3) For half of the users (if the user is even-indexed),
the following steps are performed:
a) PartA encrypts her partial sum value and filler

item set size,
∣∣∣PAu,F ∣∣∣, and sends these encrypted

values to PartB.
b) PartB encrypts her partial sum value and filler

item set size,
∣∣∣PBu,F ∣∣∣.

c) PartB multiplies these encrypted partial sum
values and obtains sum of them in encrypted
form. Similarly, bymultiplying the encrypted size
values, PartB obtains the sum of the sizes (count)
in encrypted form.

d) PartB divides encrypted sum to encrypted count,
and sends the result to PartA.

e) PartA decrypts the result and gets the FMD
attribute of the user.

4) By switching roles in Step 3, PartB obtains the FMD
attribute of the remaining users.

By choosing the minimum ratings of the profile as the
target set, FAC and FMD attributes can be computed for
nuke intent attacks with the above protocols. Moreover, these
protocols can also be used in calculating the required random
attack model-specific attributes. The only difference is the
operated target and filler item sets. Therefore, these protocols

need to be computed in a loop and the partitioning that gives
the minimum FAC value is chosen as the optimal partition-
ing. Then, FAC and FMD attributes calculated based on the
corresponding partitioning will be taken as the random attack
model-specific attributes.

H. PRIVATE ESTIMATION OF SEGMENT ATTACK
MODEL-SPECIFIC ATTRIBUTES
For segment attacks, FMTD and GFMV attributes need to be
generated based on the partitioning shown in Eq. 10. Both
the GFMV attribute and the FMTD attribute, which intend to
capture the difference between average of the ratings in target
partition and average of the ratings in filler partition, can be
calculated in a distributed manner between PartA and PartB
as shown in Eq. 28 and Eq. 29, respectively.

GFMV =

∑
iA∈PAu,F

(
rAu,i − ri

)2 + ∑
iB∈PBu,F

(
rBu,i − ri

)2
∣∣∣PAu,F ∣∣∣ +

∣∣∣PBu,F ∣∣∣ (28)

FMTD =
∣∣∣∣

∑
kA∈PAu,T

rAu,k + ∑
kB∈PBu,T

rBu,k

|PAu,T | + |PBu,T |

−

∑
iA∈PAu,F

rAu,i +
∑

iB∈PBu,F
rBu,i

|PAu,F | + |PBu,F |
∣∣∣∣ (29)

For each user u the following steps will be performed:

1) Each part constructs her filler item and target item sets
according to their data and increases the TMF value of
the items in their target item list by 1.

2) Each part calculates some fundamental partial sum val-
ues based on their data. PartA calculates

∑
kA∈PAu,T r

A
u,k ,∣∣∣PAu,T ∣∣∣,∑iA∈PAu,F r

A
u,i,

∣∣∣PAu,F ∣∣∣, and∑
iA∈PAu,F

(
rAu,i − ri

)2
.

Similarly, PartB calculates these values based on her
data.

3) For half of the users (if the user is even-indexed),
the following steps are performed:

a) PartA encrypts her fundamental partial sum val-
ues obtained in Step 2 and sends them to PartB.

b) PartB encrypts her fundamental partial sum val-
ues.

c) PartB multiplies ξK

(∑
kA∈PAu,T r

A
u,k

)
with ξK(∑

kB∈PBu,T r
B
u,k

)
and obtains ξK

(∑
kA∈PAu,T r

A
u,k+∑

kB∈PBu,T r
B
u,k

)
.

d) PartB multiplies ξK

(∣∣∣PAu,T ∣∣∣) with ξK

(∣∣∣PBu,T ∣∣∣)
and obtains ξK

(∣∣∣PAu,T ∣∣∣ +
∣∣∣PBu,T ∣∣∣).

e) PartB multiplies ξK

(∑
iA∈PAu,F r

A
u,i

)
with ξK(∑

iB∈PBu,F r
B
u,i

)
and obtains ξK

(∑
iA∈PAu,F r

A
u,i +∑

iB∈PBu,F r
B
u,i

)
.
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f) PartB multiplies ξK

(∣∣∣PAu,F ∣∣∣) with ξK

(∣∣∣PBu,F ∣∣∣)
and obtains ξK

(∣∣∣PAu,F ∣∣∣ +
∣∣∣PBu,F ∣∣∣).

g) PartB divides encrypted sum value obtained
in Step 3c to encrypted count value found in
Step 3d.

h) PartB divides encrypted sum value obtained
in Step 3e to encrypted count value found in
Step 3f.

i) PartB subtracts the value obtained in Step 3h from
the value obtained in Step 3g by first multiplying
the result in Step 3g with −1, and then multiply-
ing with the result in Step 3h to get their sum [59],
and sends the result to PartA.

j) PartB multiplies ξK

(∑
iA∈PAu,F

(
rAu,i − ri

)2)

with ξK

(∑
iB∈PBu,F

(
rBu,i − ri

)2)
and obtains

their encrypted sum.
k) PartB divides encrypted sum value obtained in

Step 3j to encrypted count value found in Step 3f,
and sends the result to PartA.

l) PartA decrypts the results and obtains FMTD and
GFMV attributes of the user.

4) By switching roles in Step 3, PartB obtains the FMTD
and GFMV attributes of the remaining users.

V. EXPERIMENTAL EVALUATION
In this section, we present experiments performed on real-
data to demonstrate the detection performance of distributed
classification approach.

A. DATA SET AND EVALUATION CRITERIA
In the experiments, we employed publicly available
MovieLens 100K8 (MLP) dataset, which consists of 100,000
5-star ratings on 1,682 movies by 943 genuine users where
each user rates at least 20 movies. In order to simulate an
ADD configuration, ratings are randomly distributed over
two parties with the following strategy: For each user, a ran-
dom distribution rate, r ∈ (0, 100), is chosen and randomly
selected r% of their existing ratings are transferred to PartA
and the remaining ones to PartB. This way, the dataset is split
into two sets so that genuine ratings of each user are randomly
shared between parties with varying rates. Hence, an ADD
configuration is obtained.
We measure classification performance by Recall and Pre-

cision metrics given in Eq. 30 and Eq. 31, where Recall,
also known as Sensitivity, measures the number of attack
profiles correctly classified as a fraction of the total attack
profiles and Precision, also known as Positive Predictive
Value (PPV), indicates the number of attack profiles correctly
classified as a fraction of the number of profiles labeled as an

8http://www.grouplens.org/datasets/movielens

attack [30].

Recall ≡ Sensitivity = TruePositive
TruePositive+FalseNegative

(30)

Precision ≡ PPV = TruePositive
TruePositive+FalsePositive (31)

B. EXPERIMENTAL METHODOLOGY
In this section, we present methodologies for two categories
of experiments performed to demonstrate the motivation
behind collaboration regarding attack detection and how
collaborating parties can achieve decent detection rates by
employing the proposed private protocols.
The general experimentation methodology for both types

of experiments includes (i) formation of the training and test
sets, (ii) creation of attack profiles for both training and tests
individually, (iii) construct a classifier model based on the
attacked training set, and (iv) testing the accuracy of the
classifier using attacked test set [49]. For all experiments,
one-third of the dataset is reserved as the test set and the
remaining as the training set. Then, attack profiles for varying
attack types and attacking parameters are generated based
on the training and test sets separately. Following the profile
creation, classification attributes are calculated based on the
aggregation of the training set and corresponding attack pro-
files for each attack type. Therefore, a classifier model is cre-
ated comprising of features for genuine users and each attack
profile types. Finally, the success of the created model against
each attack type is assessed by inserting corresponding fake
profiles into the test set. For compatibility with reported
results in the literature, we employed a k-NN classifier with
a neighborhood size of 9 [31].
During the experiments, filler size parameter, IF , is varied

from 3 to 60%, whereas attack size parameter, the number
of inserted fake profiles, is kept constant at 1% since it is
unreasonable to insert more in real-world cases [40]. Also,
the attacked movies, it , in the training set is chosen at ran-
dom among the ones which have 80 to 100 ratings. Note
that, training and testing processes for segment attack are
performed through attack profiles based on movies starring
Harrison Ford (Harrison Ford segment) and favorite horror
movies (Horror segment), respectively.

1) EXP1: HOW SUCCESSFUL CAN THE PARTIES ALONE BE
IN IDENTIFYING DISTRIBUTED ATTACK PROFILES?
In this experiment, it is assumed that PartA and PartB employ
any PPDCF scheme on ADD to provide predictions, but they
do not collaborate for attack detection. Instead, as a defense
to shilling attacks, each part utilizes the classification-based
attack detection method [49] to their partial data. However,
the attack profiles are generated in a distributed manner and
inserted into both parties datasets.
Under these circumstances, the question is whether

PartA and PartB can detect the distributed attack profiles
on their datasets individually. More specifically, if dis-
tributed attack profiles are injected into the system by a
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malicious user who is aware of the cooperated recommen-
dation scheme, how successful is the detection algorithm
in identifying the distributed attack profiles for both parties
independently?
In order to make inferences on independent success

rates, we compare obtained results with outcomes of the
classification-based attack detection method introduced by
Williams et al. [49], which is referred to as Baseline in the
experiments. For the case of Baseline, general experimen-
tation methodology is employed on entire MLP, and results
reported in [49] are reproduced.
To investigate the research question, we also employed

the same general experimentation methodology separately on
each individual part of ADD, i.e., PartA and PartB. Fig. 3
demonstrates train and test processes carried out by each
party, where MLP-A and MLP-B represent an arbitrarily dis-
tributed case of MLP between PartA and PartB, respectively.
In formation of the train and test sets, each party employs the
same users with the ones in Baseline experiments. Also note
that, similar to Baseline, attack profiles are generated based
on entire MLP and injected into MLP-A and MLP-B disjoint
datasets in distributed manner.

FIGURE 3. Methodology for experiment 1.

The classification attributes utilized in training clas-
sifiers are as follows [49]: Generic attributes (WDMA-
RDMA-WDA-LengthVar-DegSim-DegSim’), average attack
model-specific attributes (FMV-FMD-ProfileVar), ran-
dom attack model-specific attributes (FMD-FAC), group
attack model-specific attributes for Bandwagon attack
(FMD-FAC), group attack model-specific attributes for
Segment attack (FMTD-GFMV), and a target detection
model-specific attribute (TMF).

2) EXP2: HOW SUCCESSFUL CAN COLLABORATING PARTIES
BE IN IDENTIFYING DISTRIBUTED ATTACK PROFILES?
In this experiment, it is assumed that PartA and PartB cooper-
ate to provide predictions by employing any PPDCF scheme
on ADD, and they further collaborate for attack detection
by employing the proposed distributed classification-based
detection algorithm on ADD. Fig. 4 demonstrates data mask-
ing, collaborative training, and test processes carried out by
parties, whereMLP-A andMLP-B represent an arbitrarily dis-
tributed case of MLP, and MLP-A′ and MLP-B′ respectively
denote their masked versions.

FIGURE 4. Methodology for experiment 2.
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Before collaboration, each part masks their individual data
by applying Random Filling. Then, the general experimen-
tation methodology is followed to obtain train and test sets.
Distributed user profiles in train sets constitute the training
data for the proposed attack detection algorithm. For each
trial, test profiles are injected and then run through the
classifier, namelyModel C in Fig. 4.

C. EMPIRICAL RESULTS
Two groups of experiments are conducted to find answers
to the research questions that are stated in subsection V-B.
Therefore, the first group of experiments is aimed to show
how successful can the parties alone be in identifying dis-
tributed attack profiles, while the second group of exper-
iments is demonstrated how successful can collaborating
parties be in identifying distributed attack profiles.

1) EXP1: HOW SUCCESSFUL CAN THE PARTIES ALONE BE
IN IDENTIFYING DISTRIBUTED ATTACK PROFILES?
By employing the classification-based attack detection
method for centralized data [35], each part builds her own
classifier model based on her own dataset as explained in
subsection V-B1. In order to demonstrate performance of
three classifiers, attack size parameter is set to 1% and effects
of Recall versus Filler Size are examined.
Firstly, detection success of Average Nuke and Average

Push attack models are analyzed, and the results are shown
in Fig. 5 and Fig. 6. According to the results, while it is
possible to detect whole attacks with filler size values equal
to or greater than 10% by employing Baselinemethod, Recall
values of Baseline algorithm is 72 and 86 for filler size 3%
and 5%, respectively. On the other hand, when we analyze
detection success of PartA and PartB, it is concluded that
parties can reach the success of Baseline at filler size 10%,
if the attacks are performed with filler size values greater
than or equal to 30%. Also, Recall values for filler sizes 3%
and 5% are less than 30, which means that the parties cannot
detect those attacks. Note that, it is possible to manipulate a
recommender system with a small number of filler sizes [35].
Therefore, we conclude the parties alone cannot be success-
ful in identifying distributed attack profiles, especially, for
smaller filler size values.

FIGURE 5. Recall vs. filler size for average nuke attacks.

FIGURE 6. Recall vs. filler size for average push attacks.

FIGURE 7. Recall vs. filler size for random nuke attacks.

FIGURE 8. Recall vs. filler size for random push attacks.

Fig. 7 and Fig. 8 show the classification performances
against RandomNuke and Random Push attack models. Even
for small filler sizes Baseline classifier detects random nuke
and push attacks with 90 Recall value. As seen from the
results, 10% is a critical filler size value for random nuke and
push attack models for the Baseline. Baseline classifier can
detect whole random nuke and push attacks with filler size
values equal to or higher than 10%. However, it is not possible
to reach the same outcomes for PartA and PartB. As can
be seen from the figures, it is difficult for PartA and PartB
to detect distributed random nuke and push attacks, if they
are generated with filler size less than 15%. For example,
if an attacker employs 5% filler size, PartA can detect the
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shilling profiles with Recall value less than 50. Although
PartB appears to be more successful than PartA, since Recall
value is less than 60, we can conclude that parties cannot
successfully detect random attacks on their own.
The classification performance of PartA, PartB, and Base-

line for Reverse Bandwagon Nuke and Bandwagon Push
attack models are presented in Fig. 9 and Fig. 10. Compared
to Average and Random attack models, PartA and PartB
achieve better Recall results for small filler size values, when
Reverse Bandwagon Nuke and Bandwagon Push attack mod-
els are employed. According to results, it is obtained that the
Baselinemethod can reach 91 Recall value for filler size 3%.
However, it can be stated that parties can obtain similar results
for filler size 10% and in order to detect whole attacks, PartA
and PartB need the filler size is equal to or greater than 15%.
Again, the parties fail to decrease the effect of bandwagon
attacks individually.

FIGURE 9. Recall vs. filler size for reverse bandwagon Attacks.

FIGURE 10. Recall vs. filler size for bandwagon attacks.

Attack detection performance of PartA, PartB, and Base-
line for Love/Hate nuke attack model is given in Fig. 11.
Recall value of the Baseline classifier starts with 55 for 3%
filler size, increases to 88 for 5% filler size, and reach 100 for
filler sizes equal to or higher than 10%. When the Recall
results obtained for PartA and PartB are examined, it can be
stated that, while PartB detects whole distributed Love/Hate
attack profilesmore successfully than theBaseline, especially
for small filler sizes, the other part, which is PartA in the
figure, cannot detect them as successfully as PartB and Base-
line up to filler size of 10%. Hence, for distributed Love/Hate

FIGURE 11. Recall vs. filler size for love/hate attacks.

attacks on ADD, while one part might find the attack profiles,
the other part might not find them for same filler size values.
Such phenomenon occurs due to the random distribution of
the generated Love/Hate attack profiles between the parts.
Fig. 12 shows the classification performance of PartA,

PartB, and Baseline for Segment Attack model, which aims
to push an item to a targeted group of users with a specific
interest. The results obtained for the Segment Attack model
are significantly different from the Recall results obtained
for other attack models. When Recall results obtained by the
Baseline classifier for various filler sizes are analyzed, it can
be stated that while 82 Recall is achieved for 3% filler size,
for the values equal to or higher than 5% 100 Recall value
is obtained. PartA and PartB to achieve such a Recall value,
filler size value has to be equal to or higher than 40%, which
is too high for a reasonable attack strategy. For smaller filler
size values, while one part can detect the distributed attack
profiles, the other part almost cannot detect whole attacks.
There are three critical filler size values for PartA and PartB,
which are 10%, 20%, and 30%. Up to 20% filler size, while
Recall of PartA shows a decreasing behavior, PartB’s Recall
results are increasing. Between 20% and 30% filler sizes
Recall of both PartA and PartB are increasing, and these
results reach Baseline classifier when filler size is 40%.

FIGURE 12. Recall vs. filler size for segment attacks.

When Recall results are compared among each other,
results obtained for PartA and PartB are seen as successful as
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the Baseline for Bandwagon and Love/Hate Attack models.
However, Precision is particularly a problem for PartA and
PartB classifiers, especially for these attack models. Fig. 13
compares Precision results for PartA, PartB, and Baseline
for Bandwagon Push Attack on various filler size values.
As the figure indicates, Precision values obtained for PartA
and PartB are far below the Baseline case even for large filler
sizes. Hence, many false-positive identifications are made by
PartA and PartB compared to Baseline, which means that
classifiers on PartA and PartB label significant amounts of
authentic profiles as an attack. This outcome is also valid for
Love/Hate Attackmodel. In Fig. 14 Precision results obtained
for PartA, PartB and Baseline for Love/Hate Attack model
on different filler size values are shown. Precision results
of PartB are far below the Baseline, and even though the
Precision values obtained by PartA are better than PartB,
these results still cannot reach the Baseline. Therefore, PartA
and PartB classifiers misclassify some authentic profiles and
label them as an attack.

FIGURE 13. Precision - PPV vs. filler size for bandwagon attacks.

FIGURE 14. Precision - PPV vs. filler size for love/hate attacks.

Classification results obtained for several push and nuke
attack models indicate that classifiers built by parts alone
are not as successful as the Baseline. Even if collaborating
parts have their detection mechanisms, since these classifiers
are trained based on partial data, instead of on all data, they
cannot detect distributed shilling attacks on small filler sizes.
Therefore, collaboration of parts is necessary for detecting
distributed shilling attacks on ADD without jeopardizing
privacy.

2) EXP2: HOW SUCCESSFUL CAN COLLABORATING PARTIES
BE IN IDENTIFYING DISTRIBUTED ATTACK PROFILES?
The first part of the experimental results states that the parties
cannot successfully detect malicious users with small filler
size values. Although it is possible to detect the attacks
with larger filler size values, such an attack profile is not
reasonable in real-life scenarios. Therefore, the parties must
collaborate in order to produce reliable recommendations
while operating on ADD. In this subsection, the classifica-
tion success of collaboration is analyzed. For shilling attack
detection, the proposed classification-based shilling attack
detection method for ADD is employed between PartA and
PartB. A variety of experiments are conducted to investigate
whether both confidentiality and classification accuracy can
be achieved simultaneously by utilizing the proposed attack
detection method for ADD.
For detecting distributed shilling attacks on ADD without

revealing privacy, parts need to mask their data by inserting
unreal ratings into the uniformly randomly selected empty
cells. In order to generate unreal ratings, there are two possi-
ble methods [7], which are personalized or non-personalized
rating generation. Yakut and Polat [7] experimentally show
that user-mean gives slightly better results compared to other
methods. Therefore, in the experiments conducted in this
section, user-mean votes are assigned to empty cells for
random filling. To capture the balance between privacy and
classification accuracy, the number of filled cells is an impor-
tant parameter. Note that, privacy and classification accuracy
are conflicting goals. As a result, it is expected that when
the number of unreal ratings increases, the privacy of each
party also enhances, while the accuracy of classification dete-
riorates. On the other hand, assigned user-mean votes might
have a positive effects on accuracy, since datasets are too
sparse [60].
In order to explore the effects of the number of unrated cells

to be filled on classification accuracy, trials are performed by
various perturbation levels, i.e., d/4, d/2, d , 2d , where d rep-
resents the density of any user. Note that, the values for d = 0,
which indicates no perturbation, demonstrates baseline
results in the figures. During the experiments filler size is set
to 5% and attack size to 1%. The results are shown in Fig. 15
for nuke (AVNuke: Average Nuke - LH: Love/Hate - RNuke:
Random Nuke - RBW: Reverse Bandwagon) and Fig. 16 for
push (AVPush: Average Push - BW: Bandwagon - RPush:
Random Push - SG: Segment) attack models. According to
Fig. 15, it can be seen that for nuke attack models, adding
a small amount of noise by inserting unreal ratings into d/4
number of empty cells, improves Recall results of the classi-
fier compared to the Baseline. When the level of perturbation
increases to d/2, the results are still better than the base case
except for the Love/Hate attackmodel, but slightly worse than
the results obtained with d/4. The adverse effect of noise on
the classification results is beginning to appear slightly after
d/2, and precisely after d . It can be concluded from these
results that, adding small amounts of unreal ratings, introduce
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FIGURE 15. Perturbation amount vs. recall for nuke attack models
with 5% filler size.

FIGURE 16. Perturbation amount vs. recall for push attack models
with 5% filler size.

an improvement at classification accuracy. SinceMLP dataset
is too sparse, such positive effect of random filling is not
surprising as stated in [60]. However, when the perturbation
amount grows from d/2 to 2d , the classification performance
decreases dramatically compared to the base case, although
the perturbation amount of d still achieves acceptable Recall
values for nuke attack models. However, selecting a pertur-
bation amount larger than d completely worsens results.
Similar outcomes can be inference for push attack models

as shown in Fig. 16. When the perturbation amount is set
to d/4, Recall results of the classifier for Segment and Aver-
age Push attack models become slightly better, whereas for
Bandwagon and Random Push attack models results become
slightly worse compared to Baseline. For all of the push attack
models, the best Recall results are achieved when the level of
perturbation increases to d/2. Like the nuke attack models,
the adverse effect of adding noise on obtained Recall values
for push attack models appears to be seen after d/2 and
becomes even worse at 2d . Although Recall results of push
attack models are not as good as the ones of nuke attacks
for perturbation amount of d , depending on the need of the
privacy level, it can be chosen. Results established from nuke
and push attack models with 5% filler size present that it
is possible to achieve both confidentiality and classification
accuracy by utilizing d/4 or d/2 as the level of perturbation.

In order to understand the relation between random filling
and filler size, we rerun the previous trials with filler size

FIGURE 17. Perturbation amount vs. recall for nuke attack models
with 10% filler size.

FIGURE 18. Perturbation amount vs. recall for push attack models
with 10% filler size.

of 10% and the results are given in Fig. 17 and Fig. 18,
respectively for nuke and push attacks. It can be seen from
Fig. 17 that adding a small amount of noise slightly deterio-
rates Recall results of the classifier compared to the Baseline,
as in the case of d/4, yet these results are still accurate for
nuke attack models with larger filler size. The best Recall
values are obtained when the level of perturbation is d/2
for nuke attack models. Even though increasing the level of
perturbation from d/2 to d harms Recall of the classifier for
nuke attack models, they are still acceptable compared to
Baseline, especially if a higher level of privacy is required.
On the other hand, after d , increase in perturbation amount
worsens the Recall results, especially for Reverse Bandwagon
and Average Nuke attack models. Recall versus perturbation
amount results for push attack models indicates similar out-
comes with the nuke attack models with 10% filler size.
As seen in Fig. 18, initial Recall value for all nuke attack

models is 100%. Adding some level of noise slightly harms
the initial results, such as in d/4.While Segment and Average
Push attack models are not affected by this noise, Bandwagon
and Random Push attacks are slightly affected. As the case
for nuke attack models, when the level of perturbation is set
to d/2, the best Recall results for push attacks are obtained,
which are very close to Baseline. The adverse effect of
adding noise on obtainedRecall values for push attackmodels
appears to be seen after d/2, and becomes worse at 2d .
Even though Recall results of push attack models are not as
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good as the ones of nuke attacks for perturbation amount of d ,
depending on the need of the privacy level, d can also be
chosen. As Recall results obtained at 2d indicate, increase
in perturbation amount worsens the classification specifically
for Bandwagon and Average Push attack models. Results
established from nuke and push attack models with 10% filler
size present that it is possible to achieve both confidentiality
and classification accuracy by utilizing d/4 or d/2 as the level
of perturbation, which is identical to the results obtained for
attack models with 5% filler size.
These empirical results demonstrate that a balance between

privacy and classification accuracy can be assured for
well-known shilling attack models. Consequently, utilizing
the proposed classification-based attack detection method,
shilling attacks on ADD can be detected with decent accuracy
without jeopardizing data owners’ privacy.

VI. CONCLUSIONS AND FUTURE WORK
In this study, to protect privacy-preserving distributed col-
laborative filtering algorithms against shilling attacks, and to
keep up the collaboration of online vendors on arbitrary data,
distributed version of a classification-based attack detec-
tion method is presented. Private protocols are proposed to
derive the required generic, and model-specific classification
attributes for each distributed profile collaboratively between
two parts. For secure computations, homomorphic encryption
and random filling techniques are utilized in the protocols for
protecting the confidentiality of data holders. By operating
the proposed private attribute estimation protocols consecu-
tively, classification attributes are derived off-line among the
parts. In the end, half of the derived attributes are known by
each part. Then, by exchanging the attributes, the classifica-
tion model is constructed with the k-NN algorithm. At this
point, even though both parts have the model, a collabora-
tion between parties is required for testing and classifying a
new instance. In order to generate the required classification
attributes for the new instance, parts need to apply the same
process collaboratively. Empirical analyzes show that with
the proposed method it is still possible to detect attacks on
arbitrarily distributed data efficiently, without jeopardizing
data owners’s privacy.
The study has many future directions.
1) To keep collaboration of the online vendors on arbi-

trarily distributed binary data, new detection methods
are required. Indeed, there is no binary shilling attack
detection algorithm in the literature. Hence, shilling
attack detectionmethods on binary data both for central
server-based systems, and distributed systems need to
be investigated.

2) There are numerous shilling attack detection algo-
rithms proposed in the literature, hence distributed ver-
sions of thesemethods, which can operate on arbitrarily
distributed data while preserving privacy, can be pre-
sented. For some clustering based detection algorithms,
private protocols provided in this study can be utilized
in deriving the required attributes.

3) In this study, it is assumed that there are no overlapping
ratings. However, in real life scenarios, overlapping rat-
ings are inevitable. Therefore the effects of overlapping
ratings should be studied.

4) Developing robust privacy-preserving distributed col-
laborative filtering algorithms for arbitrarily distributed
data, which are intrinsically resistant to attacks, might
also be an exciting research topic.

5) This work can be employed with improvements if
researchers propose the collaboration of multiple par-
ties on arbitrarily distributed data. If multiple data hold-
ers are considered, it must be noted that parties may
coalesce for capturing a target party’s data, therefore
proposed protocols must be revised to prevent such data
holders’ attacks.
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