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ABSTRACT: This study investigated middle school students understanding of unit and unitization concepts in 
measurement interpretations of rational numbers using the number line as a tool. Fifty-six seventh-grade students 
were pretested and five consecutive whole-class teaching experiments were developed and administered based on 
pretest results. Five students were later chosen for semi-structured clinical interviews, based on their conceptions of 
unit and unitization.  Students’ reasoning was induced from the analysis of pre- and post-tests, observations of 
classroom teaching episodes, videotapes of interviews, and transcriptions and photographs of student artifacts. 
Results suggested that unit identification created difficulty for students in locating rational numbers on number lines.  
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SUMMARY  

Purpose and significance: The purpose of this study was to investigate middle school students’ 
difficulties understanding the “unit” associated with measurement interpretations of rational numbers 
using number lines. We showed what kind of “unit” understanding is necessary for a measurement 
interpretation of rational numbers and how classroom instruction can support the development of such 
understanding, especially building on students’ part-whole interpretations of unit. 
Methods: A total of fifty-six seventh grade students from an urban K-8 school located in southwestern 
United States participated in this study. Students from three mathematics classes were pretested, based on 
the existing literature concerning length measurement and number lines, to determine their initial 
understanding. Based on the data gathered, a teaching experiment was conducted to see how students’ 
understanding developed over a three-week period. Data was gathered through classroom observations, 
student artifacts, and interviews. Students demonstrated several misconceptions when using number lines 
as a tool for measurement. 

Results: Results indicated that students had problems locating improper fractions on the number line. For 
instance, fraction notation was read inverted to make improper fractions into proper fractions, resulting in 
a wrong answer.  Furthermore, students misinterpreted the whole number line as the unit rather than a 
connected, continuous composition of units. The majority of students mislocated proper fractions on a 
number line from 0 to 5. For instance, when locating ¾ on the number line (ranging from 0 to 5), these 
students partitioned the number line into four equal pieces and then marked the 3rd point (partition) to the 
right of zero.      

Discussion and Conclusion: Students’ difficulties in applying rational numbers as measures on number 
lines revealed that the unit and unitization concepts do not develop naturally.  When using an abstract tool 
such a number line, students did not easily see fractions as measures of distance. Using concrete materials 
as a unit and focusing on the iteration of that unit help students to develop a measurement “sense”. 
Moreover, transition from concrete representations to more abstract representations (e.g. number line) is 
critical to fully understanding rational numbers as measures. Several instructional strategies help students 
see fractions as measures.  Effective instruction should focus on the important concepts within 
measurement such as unit, unitization, and the iteration of length units; and connect key mathematical 
content to students’ previous knowledge and experience.  Also, group activities need to actively engage 
children in meaningful representations and discussions of measurement strategies that encourage 
increasingly sophisticated strategies and metacognitive thinking.  Students need to actively participate in 
measuring activities and group discussions that involve using different units and pictorial representations. 
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1. INTRODUCTION 
Rational numbers are a complicated content area within school mathematics. Past research documented 
the difficulties of middle school students with various fraction and rational number concepts (e.g., Kieren, 
1980; Behr, Lesh, Post, and Silver, 1983; Behr, Wachsmuth and Post, 1985). A possible reason for this 
difficulty might be that rational numbers can be interpreted in various ways, such as part-whole, ratio, 
operator, quotient, and measure (Kieren, 1976, 1980; Behr, Lesh, Post, and Silver, 1983; Behr, Harel, 
Post, and Lesh, 1992). One interpretation of rational numbers that students’ have demonstrated difficulty 
with is measurement, specifically as it is applied to length measurement. The results of the National 
Assessment of Educational Progress (NAEP), for example, revealed that American middle school 
students have difficulties with certain measurement concepts, such as length and perimeter (Martin & 
Strutchens, 2000). According to the National Center for Education Statistics (NCES, 2003) only 39% of 
the eighth graders could estimate the length of one object using another correctly, only 21% could predict 
the perimeter of a quadrilateral using a given unit of length, and 33% could determine correctly how 
many boxes of tiles are needed to cover a given area. There are many possible explanations about this 
deficiency.   

One that strikes us as especially plausible was suggested by Stephan & Clements (2003), that is, 
instruction of rational numbers as measures mainly focuses on procedures of measurement activity (e.g., 
how to measure) rather than the underlying concepts of measurement such as unit, unitization, unit 
iteration, partitioning, transitivity, and conservation. In this article we address the difficulties of 
participating middle school students’ understanding of “unit” and “unitization” in the measurement 
interpretation of rational numbers, using the number line as a tool for inquiry and understanding. We 
showed what kinds of “unit” understanding are requisite for viewing rational numbers as measures and 
how classroom instruction can scaffold those prerequisite knowledges. In particular, we focus on building 
from students’ predominant understanding of rational numbers as part-whole ratios and associated 
conceptions of units, unitization, and partitioning. We start with an explanation of part-whole, 
measurement and the measurement interpretation of rational numbers and then discuss the number line 
model. Next, we examine students’ measurement thinking. Finally, we provide a classroom example of 
how seventh grade students developed an understanding of rational numbers as measures building on their 
part-whole interpretations of rational numbers using number lines. 
 
1.1. Part-Whole, Measurement, and the Measurement Interpretation of Rational Numbers 

Numerous researchers have identified different aspects of rational numbers, the two we mention 
here are part-whole and measurement (Kieren, 1976, 1993; Behr, Lesh, Post, and Silver, 1983; Behr, 
Harel, Post, and Lesh, 1992). Part-whole interpretation of rational numbers involves comparing parts to 
the whole in a “part-whole” ratio. For instance, in the expression a/b, a refers to a parts of a total b parts. 
Traditionally, teachers introduce part-whole representations of rational numbers focusing on two-
dimensional geometric shapes partitioned into several equal parts (Mack, 1995).       

Measurement, on the other hand, involves identifying attributes (e.g., length, area, weight, 
volume) of an object or phenomenon, selecting a unit, and comparing the unit with the attribute of the 
object or phenomenon (Stephan and Clements, 2003; van de Walle, 2006). For example, for a length 
measure, one needs to, first, specify the endpoints of an object and then a unit to quantify the distance 
between the endpoints of the object by iterating the unit alongside the object that is measured. 
Measurement as a general construct includes three main principles: (1) an inverse relationship between 
the size of the measuring unit and the number of times the unit is used to measure a given quantity; (2) the 
possibility of partitioning the unit into smaller and smaller units until one can approximate a given 
quantity with any desired precision; and (3) iterating the unit end to end alongside the object or 
phenomenon being measured (Stephan and Clements, 2003, pp.3-4). The measurement interpretation of 
rational numbers involves all aspects of measurement, such as specifying a unit, determining some length, 
and measuring the length with the unit via iteration (Lamon, 1999).  For example the fraction 2/3 can be 
interpreted as a length of 2 iterations of a unit with length 1/3rd. The same principles of measurement 
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apply to the measurement interpretation of rational numbers. The unit can always be subdivided into 
smaller units, generating a greater quantity of units that correspond to some desired specificity; and the 
iteration of unit is continuous process that starts from or is done in reference to some zero-point.    

The concepts of partitioning, unit, and unitization are a common to both part-whole and 
measurement interpretations of rational numbers. Despite these commonalities, there are differences. In 
part-whole contexts, partitioning involves comparing the number of equal parts to the total number of 
equal parts, while in measurement “the number of equal parts in the unit can vary, and what you name 
your fractional amount depends on how many times you are willing to keep up the partitioning process” 
(Lamon, 1999, p. 113). Furthermore, in part-whole situations, students generally deal with one unit, such 
as partitioning a pizza into several parts (e.g., ½’s, 1/3rd’s, or 1/4th’s), or partitioning a box of soda among 
several people. In contrast, in measurement contexts students often deal with measures of multiple units. 
Due to similar language, sets of symbols, and similar representations it is likely that students will 
overgeneralize part-whole partitioning strategies in measurement contexts.   

Among the important elements of rational numbers as measures is the concept of the unit. Units 
are used to determine numeric relationships between what is measured and the scale of measure (van de 
Walle, 2006). For example, to measure a length of an object, one needs to identify what the unit is and 
how many units are needed to match the length of the object being measured. However, discerning the 
unit is a challenging task for many students particularly when units are compared multiplicatively (van de 
Walle, 2006). Furthermore, unitization is the “cognitive assignment of a unit of measure to a given 
quantity” (Lamon, 1999, p.42).  For example, when measuring the length of a pencil as 5 centimeters, 
the unit in this case is 1 centimeter, of which there are 5.  If this same length is measured as 50 
millimeters, the unit changes from 1 centimeter to 10 millimeter, and measurement changes by a factor of 
10 (from 5 to 50), related inversely to the length of the unit. In this case it can be said that the length has 
been “reunitized”. To distinguish differences between measurement and part-whole contexts clearly, and 
to show explicitly how these concepts are distinct within different situations, we used the number line 
model.  
 
1.2. The Number Line Model 
 

The number line is a practical model for introducing systems of units and ties directly to 
measurement. Specifically, the number line model has features different from other models (e.g., area and 
set models) in that it may be continuous while set models are visually discrete (Bright, Behr, Post, & 
Wachsmuth, 1988).  Also, typically the distance from 0 to 1 on a number line represents the base unit and 
the model involves iteration of that unit and supports “simultaneous subdivisions of all iterated units” 
(Bright, Behr, Post, & Wachsmuth, 1988, p. 235).  The analogical tie to distance, a physical attribute, is 
critical.   

The rational number on a number line represents some distance from a zero point (Lamon, 2005). 
For example, 3/4th on the number line represents the distance from zero to 3/4 by three iterations of a 
1/4th-unit. Also, other measurement principles can be represented with a number line. For instance, the 
distance from 0 to 3 can be represented as 3 (1-unit), 6 (1/2-unit), or 12 (1/4-unit). As the size of the unit 
decreases (e.g. from 1 to 1/2 to 1/4) the number of units needed to measure the same distance increases 
proportionally (e.g. from 3 to 6 to 12). Each smaller unit allows for a more precise measurement. 
 
1.3. Students’ Measurement Thinking 
 

Students have traditionally demonstrated an aptitude in using measurement concepts. This 
aptitude, however, has been found in geometric contexts, rather than those with one-dimensional lengths, 
such as embodied by number lines (Payne, 1976). Studies examining students’ measurement thinking 
using number lines are limited. Here we discuss these studies and their connections to this investigation.    

Payne (1976) reported that elementary students demonstrated a greater ability to determine 
fractional parts of area models using part-whole strategies than locate fractions on number lines. Novillis 
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(1976) supported Payne’s findings using middle school students. She reported that middle school students 
more easily located proper fractions in geometric regions than on number lines. She argued that students’ 
difficulties were caused by the application of part-whole strategies to number lines from zero to one. She 
also found that students partitioned number lines in the same way as discrete areas, with the fraction 
representing some number of partitions, or parts, in the entire area/length, or whole. Fractions were, 
therefore, partwhole ratios rather than measures. Novillis further revealed that the length of the number 
line might be a critical factor in students’ difficulties, saying that “whenever a number line of length one 
is used, then the number line model is not being completely tested. In this case, the number line is really 
just another part-whole model where the unit is not in question, being the ‘whole’” (p. 423). 

Bright, et al. (1988) discussed students’ thinking about number lines using the number line from 
zero to one, and compiled a number of strategies and difficulties of students. In general, they found that 
elementary school students displayed difficulties with untization, reunitization, iteration, and associating 
fraction symbols with number line representations. In particular, “students were unable to choose a 
reduced fraction name when an unreduced equivalent form was represented on a number line” (Bright, et 
al., 1988, pg. 217).  

The source of students’ tendency to apply part-whole strategies to measurement tools such as 
number lines has been tenuously attributed to knowledge of whole numbers with discrete units (Behr, 
Wachsmuth, Post, & Lesh, 1984). Researchers found that judiciously designed tasks potentially aided the 
development of students’ measurement concepts (Tzur, 2004).  

While the number line can be used as a tool for measurement, part-whole interpretations of 
rational numbers can disrupt learning of measurement concepts.  Given these complexities, and given that 
there has been little research studying the nature of students’ understanding of rational numbers as 
measures in either individual or classroom teaching contexts, the present study attempts to broaden our 
understanding about students’ changing ideas of unit and unitization associated with the measurement 
interpretations of rational numbers using number lines longer than one, and to identify instructional 
strategies that will help students develop such an understanding of rational numbers as measures. Of 
particular interest was how those instructional strategies might be used and useful in whole-class settings, 
and build on students’ prior knowledge and tendencies to view fractions as part-whole ratios. 

 
2. METHODOLOGY 

 
This study was part of a larger NSF-funded study that investigated students’ understanding of 

rational numbers that included individual interviews (student and teacher) and classroom observations. 
 
2.1. Settings and Participants 
 

Fifty-six seventh graders participated from three different classes in an urban K-8 school located 
in Arizona, U.S.A.. Participation in the study was voluntary and, according to the classroom teacher, the 
participating students represented various levels of performance in mathematics (e.g., low, middle and 
high). The school had predominately Hispanic students of lower-middle class background as over 90% of 
them received free or reduced lunch. The district adopted mathematics curriculum consisted of the 
National Science Foundation (NSF) sponsored, Mathematics in Context (MiC) (2003) and Arizona 
Instrument to Measurement Standards (AIMS) test preparation materials. 
 
2.2. Procedure 
 
 A four-day classroom teaching experiment was conducted to investigate students’ ideas of unit 
and unitization associated with the measurement interpretation of rational numbers in a whole-class 
instructional setting. The goal was to examine students’ development and understanding of mathematical 
concepts (specifically measurement with number lines) by providing them mathematical tasks and content 
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to which they have not been previously exposed. The overall cyclic process of data collection and 
analysis for this project was outlined as follows (adapted from Middleton et al., 2004): 
  

 
 
Figure 1. Overall cyclic process of data collection and analysis for the project (adapted from Middleton, 
et al., 2004)  
 

Before instruction, based on a review of existing research literature on length measurement and 
number lines, we developed and administered multiple assessment tasks to the participating classes. The 
assessment asked students to locate both proper and improper fractions on number lines ranging from 
zero to one, zero to three, and zero to five. Some examples: students were asked to locate 1/2 on a number 
line from zero to five, and to locate 13/3 on a number line from zero to five (similar to the tasks used by 
Bright in 1988) to inform the instruction and aid students’ learning of measurement and rational numbers. 

Based on the assessment results, we identified students’ initial difficulties, made hypotheses for 
possible sources of those difficulties and proposed an instructional intervention. We designed the 
instructional units based on these students’ pretest results, and collaborated with the regular classroom 
teacher who taught the instructional unit with one of the researchers. Three 7th grade classes were taught 
consecutively but separately at the same day for four days. Each teaching session lasted in 80 minutes. 
During the teaching sessions, one of the researchers made observations and took field notes, hypotheses 
were tested and new hypotheses were generated, to revise and form subsequent days’ instruction. After 
each classroom session, we worked with the classroom teacher, discussing and analyzing student thinking, 
generating and revising hypotheses, and designing the next day’s instruction (see Figure 2 for the 
instructional design cycle). 
   

 
 

Figure 2 Instructional design cycle 
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Five students of varying abilities were chosen for individual, task-based interviews in order to 
investigate students’ unit and unitization ideas on number lines. The students were chosen because their 
performance was typical of various degrees of sophistication throughout the three classrooms.  The 
individual task-based interviews were performed in rooms separate from the main classroom; twice 
weekly, over three consecutive weeks, each interview lasted 45 to 50 minutes. The purpose of the task-
based interviews was to more fully explore their understanding of rational numbers as measures on 
number lines, investigate the development of those ideas, and identify possible learning trajectories. 
Interview foci included students’ written inscriptions and verbal “think aloud” responses. Interviews 
additionally focused on students’ reasoning, procedures, and how their reasoning and procedures changed 
over time. Two of the five students eventually dropped out, and of the three remaining students Malcolm 
was chosen as a case because he demonstrated a clear trajectory in his development of ideas about unit 
and unitization on the number line. For the purpose of this study, we will focus on the whole-class 
teaching episodes.    

 
2.3. Data Analysis 
  
 We analyzed students’ responses by various sets of criteria.  The first was the conventions of 
formal mathematics.  How students located the given rational numbers on number lines allowed us to 
initially classify the full range of responses into “bins” that corresponded with various proportions of 
questions “right” or “wrong” (Miles & Huberman, 1994). When we decided that one question was typical 
of a set of questions, we used that question and the mathematical correctness of students’ responses as a 
proxy for the overall percentage of correct responses to the similar questions.  For example, many pretest 
questions asked students to locate proper fractions on number lines from zero to one.  Instead of using the 
overall percentage of correct answers to those questions, we chose one question (locating 3/4th’s) as a 
placeholder for the entire subset of similar questions.  Second, we analyzed students’ responses within the 
aforementioned “bins” for idiosyncratic differences that would reveal subtleties in students’ thought 
processes.  Also, we isolated common misconceptions the students, on average, exhibited.  They are 
described below. 

When some student response was particularly confusing, we adopted the assumption that the 
student had made sense of the problem in some way.  Our goal, then, was to suppose what type of 
understanding the student must have based his or her response on in order to answer the question in the 
way her or she did.  Both commonalities (in superficial student response and in inferred student thinking) 
were used to design instruction and form conclusions.  A similar method was used to analyze the posttest 
results and choose students for follow-up, task-based, individual interviews. 

 
3. RESULTS 

 
3.1. Experiment 
 

While students’ measurement difficulties were the initial impetus for performing the teaching 
experiment, we used an instructional design cycle to plan, implement, and evaluate instruction that 
emerged.  The cycle of designing instruction went through several stages (see Figure 2). 
 
3.2. Identify Students’ Difficulties 
 

Fifty-six seventh grade students from three math classes were pretested, based on existing 
literature concerning length measurement and number lines, to determine their initial understanding.  
Students demonstrated two primary misconceptions when using number lines.  

 
 

3.3. Misinterpreting the Fraction Notation 



 

 699 

 
First, fraction notation, with improper fractions, was read inverted to make proper fractions, 

resulting in a wrong answer.  Jeffrey, for instance, misinterpreted the fraction 3/2 as its inverse, 2/3 (as 
shown in Figure 3).  He divided the number line into three equal pieces, finding 3/2 at the location of 2/3 
on the number line as if it were a number line from zero to one. 

 
Fig. 3 Jeffrey’s attempt to find 3/2 on a number line from zero to three 
 
3.4. Misinterpreting the Whole Number Line as the Unit 
 

Students also misinterpreted the number line as the unit rather than a composition of units.  Using 
both number lines from zero to one and zero to five students considered the total given length of the 
number line as their whole or unit.  If a number line was only from zero to one, students could visually 
partition the picture and obtain correct answers.  When number lines represented a collection of wholes or 
units, part-whole unitization strategies were no longer appropriate.  For example in Figure 4, Rene found 
¾ by first dividing the whole number line into half and half again to find ¾.  He used the number line 
from zero to five as a single unit rather than a collection of five, continuous units of length one.  

 
Fig. 4 Rene’s attempt to find ¾ on a number line from zero to five 
 
3.5. Hypothesize Source of Difficulties 
 

In regard to the first misconception, we hypothesized that students’ inversion of the fraction 
notation was an attempt to transform improper fractions, with which they were unfamiliar, into proper, 
more familiar fractions (see Figure 3). 

In regard to the second misconceptions, we proposed that students interpreted ideas of unit and 
unitization in terms of part-whole ratios without accompanying measurement ideas or understanding of 
the number line.  Students were unable to understand a number line as a continuous collection of units, or 
wholes.  Instead they viewed the entire number line as the “whole” (1-unit), and misused the number line 
as a fraction bar. 
 
3.6. Hypothesize Possible Solutions 
 

Their incorrect interpretations of the fraction notation itself lead naturally to modeling the correct 
use and interpretation of fractional notation in general.  To help students overcome misconceptions about 
measurement ideas of “unit” and “unitization”, we hypothesized that instruction should focus on the 
application of part-whole ideas, properly extended into measurement contexts.  We hypothesized that if 



 

 700 

students used the ideas of the unit and unitization in measurement contexts, they would begin to recognize 
the number line as a collection of continuous wholes.   
 
3.7. Design Instruction that Implements Solutions 
 

Instruction was designed based on student’s initial understanding shown on pretest results and 
resulting hypothesized solutions to students’ difficulties.  While proper measurement interpretations of 
rational numbers requires that measures be continuous iterations of a unit, because the students displayed 
such difficulty in simply identifying the unit, the transitional activity was designed to bridge both 
measurement and part-whole interpretations.  For example, because students viewed the entire given 
length of the number lines as the whole, the aim of the first day’s instruction was to help students see a 
measure as a continuous length of wholes, rather than units per se.  Instruction lasted four days in three 
different seventh-grade math classes.  Each class contained a nearly equal portion of the fifty-six students. 

 
3.8. Implementation of Instruction 

 
On first and second day of instruction, students used Dr. Loyd’s fraction kit that included wholes, 

halves, thirds, fifths, sixths, and eighths, using only the width of each piece.  Students used the whole to 
measure the lengths of their tables in small groups and then drew their table measurements with models 
on transparences.  Although the size of the tables were similar, students’ measurements varied based on 
how carefully they measured (8 and ½ wholes versus 8 and 1/3 wholes).  They began iterating the 
“wholes” to measure the lengths of their rectangular tables with various estimations of remaining partial 
iterations of wholes, or left-over lengths that did not fit into another whole.  For instance one group found 
7 ½ wholes as their measurement.  Each small group presented in whole class discussion.  Unlike part-
whole situations, in which the whole constituted the unit, the whole applied in this measurement activity 
became the unit of iteration.  The measurement of the table was therefore a length represented by some 
number of iterations of the unit, or whole. 

Each group was asked to predict how their measures would change when using halves instead of 
wholes.  Most students began estimating with their hands the number of halves that would measure the 
length of the table.  Only one group was able to conclude that their measurement of the table using wholes 
could be multiplied by two to find the length in terms of halves without measuring. The following 
conversation between the researcher and a student reveals how this student thought about reunitization. 

 
R: researcher; S: student   

 
R: What did you measure? 
S: 8 ½. 
R: 8 ½ what? 
S: 8 ½ wholes. 
R: Okay. What would be the length of the table if you measured it with ½’s. Can you tell me 

without actually measuring with ½? 
S: [paused, estimated two iterations with his hand] 16 ½. 
B: 16 what? 
S: 16 halves. 
B: How did you get 16? 
S: 8 times 2. 
B: How many halves you have altogether? 
S:   17. 

 
The group in the above vignette was able to simultaneously subdivide each whole or unit into a smaller 
unit or whole to obtain an answer without manually iterating the new unit.  The other groups displayed 
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difficulty in determining the length of the table with halves accurately without manual measurement and 
ultimately began by estimating with varying accuracies. Students then used the half fraction strip to 
measure the length of the table, manually verify their predictions, drew pictures of their strategy on 
transparences and presented. 

On the third and fourth day of instruction, because in previous days’ lessons students expressed 
difficulty in estimating measures using units smaller than the whole, we hypothesized that students 
difficulties were sourced in not recognizing the inverse relationship between the length of the units and 
the number of units needed to measure some length.  Accordingly, we used this as the goal of instruction.  
Students were asked to measure their tables using thirds, and predict the measurements using fourths, 
fifths, and eighths, and encouraged to verify their predictions with manual iteration.  They were able to 
recognize that when the unit grows smaller the table measurement increases, without actually changing 
the total length of the table (8 1/3 with a unit of 1 whole versus 25 with a unit of 1/3).  For example, Van 
found that the length of the table is 8 1/3 wholes, or 16 halves and 1/3 of a whole, then reunitized the 
entire amount (8 1/3 wholes) with a unit of 1/3 as follows: 

 
R:  It was 16 halves and then you had the third, so how many thirds would be in your table if you 

were to measure it in thirds? 
S:  24 [thirds]. 
R:  24, how did you get that van? 
S:  Eight times three. 
R:  Ok so in eight there are 24 thirds so you got 8 and 1/3 so its… 
S:  25 [thirds]. 

 
Next, we asked the entire class to measure number lines with the same pieces used to measure the 

tables.  For example, a number line from zero to five was drawn and the class was asked what the 
measure of the number line would be using wholes, halves, thirds, and fourths.  The largest difficulty in 
finding lengths along the number line was locating the first iteration of the unit. Students’ confusion about 
the location of zero, or if iteration began at zero or one, prevented them from being able to perform that 
first iteration. Once students were able to see numbers on a number line as measures of distances, they 
began iterating from a zero point and expressed the length of several number lines with different units (e.g. 
0 to 1, 0 to 3, 0 to 5 etc.). The goal of this activity was to complete the transition from using wholes as 
separate, discrete entities, to using wholes as units that can be iterated to measure distance.  The number 
line was used to scaffold this transition. 

Then, students were asked to show on a number line the measurement of the table in wholes, 
halves, and thirds.  The purpose of this activity was to help students practice the iteration of units to find 
measurements using number lines, that is, to transition from the concrete representations of table 
measurements to the abstract representation of the number line.  Group A drew a partial number line to 
show their method of measuring the table with different units, their table measurements using the wholes 
and halves that they later represented on the number line are shown in Figure 5.  
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Fig. 5 Group A’s method of measuring the table using wholes and halves 
 

Students, on the last day of instruction, were able to see a number line as a collection of units of 
length one.  They, when given an empty number line from zero to five, suggested that a “length of one” 
should first be labeled.  They added another length of one to the distance from zero to one, and so on until 
the entire number line was unitized.  This showed that students saw the units on the number line as 
continuous and connected lengths of one, and the need for iterating units on the number line when 
attempting to measure some length. Moreover, students began to conceptualize the number line as 
different from fraction bars and as a tool for interpreting rational numbers as measures. 

However, students had difficulties identifying the unit of improper fractions.  For instance, when 
asked to locate 9/4 Jeff initially was unable to recognized the unit as ¼, instead representing 9/4 as a 
mixed number by assuming a unit of one, and finding how many wholes could fit into 9/4 with some 
remainder.  He then reunitized his wholes in terms of 1/4 and added to obtain the original 9/4 (see Figure 
6). 

 
Fig. 6 Students’ strategies for locating 9/4ths on a number line from zero to five 
 
3.9. Emerging Ideas and Strategies 
 

After instruction, several strategies for correctly interpreting fractions as measures emerged:  
repeated halving entire number lines, repeated halving pre-unitized number lines, and iteration of given 
units.  Also, no student misinterpreted (by inverting improper fractions) the fraction notation on post-test 
results. 
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3.10. Repeated Halving of Entire Number Lines 
 
Repeated halving was a strategy that students were able to use to correctly locate fractions on number 
lines (see Figure 7).  Jessica, when asked to locate ¾ on a number line from zero to five, cuts the entire 
number line into two pieces, then the first half again into half to find 1 ¼.  She used this length to locate 
one.  She then divided her one-unit into four pieces to find her unit of ¼ and iterated it three times to find 
¾. 

 
Fig. 7 Jessica’s repeated halving strategy 
 
3.11. Repeated Halving Pre-unitized Number Lines 

 
Repeated halving was also used after students first divided the number line into units of one (see 

figure 8).  Carlos pre-unitized the number line into five one-units then subdivided zero to one in half to 
find 1/2, then again to correctly locate a measure of ¾. 

 
Fig. 8 Carlos’s Halving Strategy 
 
3.12. Iteration of Given Units 
 

Students also iterated the given unit to find lengths measurement.  Students were able to 
recognize the unit of ½ in the fraction 5/2, and iterate that unit of ½ five times to correctly locate 5/2 on 
the number line (see Figure 9). 

 
Fig. 9 Students’ iteration strategies of ½ to find 5/2 between zero and five 
 
3.13. Pre-Posttest Gains 
 
 While students performed better on every assessment given to them, these gains in student 
achievement were potentially spurious for a number of reasons.  First, students may have learned how to 
take the test rather than the content per se.  Second, no psychometric evaluation of the test itself was 
performed.  Third, the assessment, both pre- and posttest were intended only as previously described.  At 
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no point were they intended to measure student accuracy in an answer-oriented sense.  Our focus was on 
the strategies around answers, and insofar as students answered similarly, we reasoned, their strategies 
were potentially similar as well.  Fourth, our goal was to qualify student thinking, rather than quantify 
student difference scores.  As researchers have pointed out, pre-posttest designs do little to qualify student 
learning.  Because including pre-posttest scores does little to qualify students’ thinking on the 
measurement tasks given to them, and because casual links between instruction and student gains could 
not be differentiated from other plausible sources of change in students’ performance, we omitted these 
results.  
 

4. DISCUSSION AND CONCLUSION 
 

Students’ difficulties in applying rational numbers as measures on number lines revealed that the 
unit and unitization concepts do not develop naturally.  Moreover, when using an abstract tool such a 
number line students did not easily see fractions as measures of distance along those number lines.  Using 
concrete materials as a unit and focusing on the iteration of the unit helped students develop a 
measurement “sense”. Transitioning from concrete representations to more abstract representations (e.g. 
number line) is critical to fully understanding rational numbers as measures. 

This point should be repeated.  Students’ understanding of “unit” as a concrete, length 
measurement is critical to their understanding of rational numbers as measures.  When units remain 
nested within well developed part-whole instructional histories, students exhibit a number of 
misconceptions concerning the use of rational numbers as measures (see above results for specific 
misconceptions students had).  When length measurement was concretized with a physical object of some 
kind, in our case a fraction strip, and that object was iterated continuously to measure some distance, in 
our case their tables, students were able to connect the broad concept “unit” within measurement contexts. 

Reunitization, or in our case students’ projecting length measures with various units independent 
of physical iteration, allowed those students two realizations.  The first was that the size of the unit was 
inversely related to the number of units involved in some measurement.  Second, and more important to 
rational numbers as measures, it that the unit became a fraction of one, as denoted by the denominator.  
The number of iterations, then, composed the numerator.  The combination of this new understanding of 
numerator and denominator, and of the inverse relationship between size of unit and quantity of 
measurement (yielding increasingly accurate measurements) constituted, by definition, an understanding 
of rational numbers as measures.  Students’ representations provided a direct link between the quantities 
of their measurements, fraction notation, and unit size.  Posttest results support the conclusion that 
students had gained an understanding of rational numbers as measures. 

Several instructional strategies helped students see rational numbers as measures.  Effective 
instruction should focus on the important concepts within measurement such as unit, unitization, and the 
iteration of units; and connect key mathematical content to students’ previous knowledge and experience.  
Also, group activities need to actively engage children in meaningful representations and discussions of 
measurement strategies that encourage increasingly sophisticated strategies and metacognitive thinking.  
Students need to actively participate in measurement activities and group discussions that involve using 
different units and representing their models of measurement with pictures. 

Measurement is an important aspect of interpreting rational numbers.  Students’ predominant 
reliance on rational numbers as part-whole relationships need not confound their understanding of rational 
numbers as measures as well.  In fact, part-whole knowledge of rational numbers, as we have shown, can 
aid in students’ development of rational numbers as measures.  When coherent frameworks of 
instructional feedback, evaluation, and revision are combined with adaptive instruction, sensible, 
cognitive evaluation, and critical analysis, students’ natural knowledge of part-whole ratios can support 
their developing awareness of the more complex relationships and potentials of rational numbers. 
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