
 Procedia Engineering 178 (2017) 213 – 222

Available online at www.sciencedirect.com

1877-7058 © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the International Conference on Reliability and Statistics in Transportation and Communication
doi: 10.1016/j.proeng.2017.01.100

ScienceDirect

16thConference on Reliability and Statistics in Transportation and Communication,
RelStat’2016, 19-22 October, 2016, Riga, Latvia

The Role of Communication and Meta-Communication in Software
Engineering with Relation to Human Errors

Boriss Misnevsa*, Ugur Demirayb
aTransport and telecommunication Institute, 1 Lomosova str.,Riga, LV-1019, Latvia

bAnadolu University, Yunus Emre Campus, Eskisehir,26470, Turkey

Abstract

This paper examines and focuses on some issues and questions relating to how the use meta-communication concept in Software
Engineering process to reduce human errors. The role of IT project communication and the project management tools, which can
be regarded as vital for Software Engineering are investigated. Socio-cognitive modeling of Integrated Software Engineering
using the TOGA meta-theory, has been discussed. Today the focus is especially on the identification of human and organization
decisional errors caused by software developers and managers under high-risk conditions, as evident by analyzing reports on
failed IT projects. Software Engineer’s communication skills are listed. Several types of initial communication situations in
decision-making useful for the diagnosis of Software developers’ errors are considered. The developed models can be used for
training the IT project management executive staff.
© 2017 The Authors.Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 16th International Conference on Reliability and Statistics in
Transportation and Communication.

Keywords: defect prevention, Socio-cognitive modeling, IT project processes, TOGA meta-theory

1. Introduction

The current research was based on the assumption that human error is an important cause of software defects.
Communication and meta-communication studies were used to develop a deeper understanding of the human errors

* Corresponding author

E-mail address: bfm@tsi.lv

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the International Conference on Reliability and Statistics in
Transportation and Communication

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.01.100&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.01.100&domain=pdf

214 Boriss Misnevs and Ugur Demiray / Procedia Engineering 178 (2017) 213 – 222

that occur during the software development process and help IT practitioners to detect and prevent those errors early
in the software development lifecycle.

Early elimination of mistakes will improve software quality and reduce overall development cost. The target of
the research was to develop an approach and model useful for miscommunication reducing in IT project activities.
The research is related to the Software Engineering Master Program graduates competence evaluation project
(Misnevs and Yatskiv, 2016) with the emphases on master students’ communication skills.

The main attention was paid to understanding of meta-communication role in IT Project communication
processes. The term “meta-communication” was suggested by Bateson in 1951, and then he elaborated in 1956 a
critical fact that every message could have a meta-communicative element, and typically, each message held meta-
communicative information about how to interpret other messages. He saw no distinction in type of message, only a
distinction in function (Bateson, 1972).

The prefix can have various meanings but as used in communication, philosophy and psychology its meaning is
best recognized as about. Thus, Meta-communication is communication about communication; meta-language is
language about language; meta-message is a message about a message. You can communicate about the world -
about the human errors in the software engineering process, the computer you are using, or the text you’re reading
right now. We refer to this as object communication; because you are talking about objects. And the language you
are using is called an object language. But notice that you are not limited to talking about objects; you can also talk
about your talk; you can communicate about your communication. And this is referred to as meta-communication. In
the same way, you can use language (i.e., meta-language) to talk about language (i.e., object language). And you can
talk about your messages with meta-messages.

Meta-communication mostly is the nonverbal cues (tone of voice, body language, gestures, facial expression, etc.)
that carry meaning that either enhance or disallow what we say in words.

The distinction between object communication and meta-communication is not merely academic; it’s extremely
practical, and it is recognized that the difference between these two forms of communication is essential in
untangling lots of conflicts and understanding a wide variety of interpersonal communication interactions. Actually,
we use this distinction (as a meta-communication) every day, mostly without realizing it. For example, when you
send someone an e-mail with a seemingly sarcastic comment and then put a smiley at the end, the smiley
communicates about your communication; it says something like “this message is not to be taken literally; I’m trying
to be humorous.” The smiley is a meta-message; it’s a message about a message. When you say, in preface to some
comment, “I’m not sure about this but....” you’re communicating a message about a message; you’re commenting on
the message and asking that it be understood with the qualification that you may be wrong. When you conclude a
comment with “I’m only kidding” you’re meta-communicating; you’re communicating about the communication.

Frits Staal (2010) related the term to meta-language concept that is found in logic both in Western and Indian
traditions. Staal considered the term meta-language, or its German or Polish equivalent, to have been introduced in
1933 by the logician Alfred Tarski.

In this research we discuss our ideas on the software quality improvement by the integration of the human factors
engineering into the development process using Socio-cognitive Engineering methods.

2. Literature Review

There are many studies of human factors, however most of them are solely oriented on human-machine
operations in terms of system and program usability, but not in terms of software engineering process (Spichkova et
al., 2015) or they are dedicated to so called Engineering Error Paradigm (Redmill and Rajan, 1997). By this
paradigm humans are seen as they are almost equivalent to software and hardware components in the sense of
operation with data and other components, but at the same time humans are seen as the “most unreliable component”
of the total system.

Meta-communication studies in Computer Science mostly are related to Human Computer Interaction (HCI) and
Semiotic Engineering. Semiotic perspectives on HCI take human-computer interaction as a special case of computer-
mediated human communication.

215 Boriss Misnevs and Ugur Demiray / Procedia Engineering 178 (2017) 213 – 222

Through the interface, systems designers communicate to users their design vision as well as how the system can
or should be used for a variety of purposes. To date, there hasn’t been enough empirical research in HCI exploring
this complex phenomenon.

The paper “Meta-communication and Semiotic Engineering: Insights from a Study with Mediated HCI” reports
an empirical research about meta-communication in HCI and discusses how and why semiotically - inspired research
can contribute to advance knowledge in this field (Teixeira Monteiro, 2013). Another area related to meta-
communication is values and culture in interactive systems design. Depending on the way technologist designed, it
will afford behaviors that are intrinsically related to individuals and the complex cultural context in which they are
using it (Neakrase et al., 2011).

Individuals will interpret and behave through the technology influenced by the cultural systems (e.g., values,
beliefs, behavioral patterns).Their behavior may be in disagreement or agreement with their values and the values of
other people. This, in turn, will promote or inhibit certain values over others. The meta-communication research in
Software Engineering is also related to the integration of architectures, protocols, and systems.

It is argued that meta-communication, i.e. communication about communication rules, is a general integration
methodology that is applicable to the integration of architectures, protocols, and systems. Efforts towards the
development of an automated methodology for meta-communication are discussed. The authors view meta-
communication as a design problem. Meta-communicating entities exchange partially specified communication
rules. Each entity, or a meta-communication center, applies a standard composition principle on the individual
partially specified rules in order to derive the complete protocol architecture (Meandzija, 1990). Some authors study
cultural values in Software Engineering as meta-communication entities (Pereira et al., 2011; Pereira and
Baranauskas, 2015). Value-oriented and Culturally Informed Approach (VCIA) to sensitize and support Computer
Science and Engineering professionals in taking values and culture into consideration throughout the design of
interactive systems.

The reflective practice becomes more important the more the differences in technologic standards, social values,
norms, assumptions and interests, etc. in global contexts interfere the sphere of the Information Systems
Development (ISD).

The paper (Yetim, 2004) extended the framework for reflective practice proposed by Ulrich (2001). Three
different types of meta-communication are described:

• Ex ante meta-communication (taking place before action),
• Meta-communication in action (taking place during action), and
• Ex post meta-communication (taking place after action).

The meta-communication model itself consists of two levels:

• Clarification level (where conversation for clarification takes place). At this level there are eleven clarification
issues to be reflected on.

• Discourse level (where the discursive examination of contested claims takes place). At this level, there are eight
discourses, which are related to the clarification issues.

In Bateson’s work (1972), meta-message was defined as a refinement of his earlier notion of “mood sign[al]”s
from his works of the 1950s. Invoking Bertrand Russell’s Theory of Logical Types, Bateson envisaged a potentially
infinite hierarchy of messages, meta-messages, meta-meta-messages and so forth, each meta-message
deterministically providing the full context for the interpretation of subordinate messages. Being rather technical, his
definition was misunderstood, and meta-message appropriated with the same meaning as subtext, especially in the
field business communications.

The issue is that people don’t understand each other’s code. Verbal communication is supported by a raft of non-
verbal signs and cues that reinforce what we are saying or clear up any ambiguities. For example, we may cross our
arms when we feel threatened by what somebody else is saying, or we nod our heads when we agree with what they
are saying.

216 Boriss Misnevs and Ugur Demiray / Procedia Engineering 178 (2017) 213 – 222

Although nonverbal communication gives clues to what speakers are thinking about or enhances what they are
saying, cultural differences may also interfere with understanding a message (Pennycook, 1985). The rules are
brought to our attention only in formal discussions of nonverbal communication, such as this one, or when rules are
violated and the violations are called to our attention-either directly by some tactless snob or indirectly through the
examples of others.

It must be mentioned that nonverbal behavior is highly believable. For some reasons we are quick to believe
nonverbal behaviors even when these behaviors contradict verbal messages. Nonverbal reports on research
demonstrating that compared to verbal cues, nonverbal cues are four times as effective in their impact on
interpersonal impressions and ten times more important in expressing confidence. From a different perspective,
Albert Mehrabian (1976) argues that the total impact of a message is a function of the following formula is: total
impact = 7% verbal + non-verbal 38% + 55% facial.

It is essential to remember that the meta-communication which accompanies any message is very powerful. The
receiver will use these clues to help them to interpret what you mean, but more importantly they will often take the
meaning from the meta-communication rather than from the words themselves, particularly when what you are
saying conflicts with what you are doing.

This may be particularly useful when the opportunity for face-to-face meta-communication is missing, as in
distance teaching (McLean, 1999) or as in geographically distributed IT project teams.

Another example deals with etiquettes. Etiquettes are practicing in good manners or to know how to behave in
given situation and to know how to interact with the people or others. Proper etiquette helps you make a great first
impression and stand out in a competitive with others. From point of communication science, etiquettes have meta
communicable function in communication process.

Some requirements from actual e-mail etiquette (E-Mail Etiquette, 2014) are mentioned below.
Write carefully. Once you send an email message, you cannot take it back or make it disappear. The reality is that

your messages may be saved for a very long time. They may also be read by others, or forwarded to others without
your knowledge.

Sign your messages with at least your name. It’s nice to add your email address; too, since some email programs
make it difficult to see who the sender of the message was.

Indicate humor or jokes with a smiley face. :-).
Be calm. You may have misunderstood what was meant. Don’t reply while you’re still angry (this is called

“flaming”).
Don’t forward emails unless you have the permission of the author. What they wrote may not have been intended

for wider distribution, so it’s always better to ask.
Do let people know their letter was received. Try to talk about one subject per message only. For another subject,

start a new email.

3. Science language is perfect sample for meta communication in Software Engineering

Since has its own language. It tells or passes us information and data by showing and serving some code, figures,
charts and graphics also etc. It accepts that if we know these codes than lean to us concepts, thoughts and idea.

Discourse in the science classroom for Software Engineering is framed under situated cognition theory, whereby
interactions between individuals are part of the normal culture of the classroom. For Software Engineering
knowledge to be adequately constructed by a student, these interactions must be meaningful ones. This is especially
important in an online course where typically learning occurs through interactions between the students and the
instructor, the students with one another, and within the individual themselves. As part of these online interactions,
good reflective practice includes the different forms of feedback and the quality of this feedback. However, even
with quality reflective interactions, there are barriers to Computer Science concept construction in an online
environment. These barriers are discussed, and future research directions are suggested based on this review.

It is clear that the environment for learning Software Engineering is not limited to the face-to-face classroom, but
can be other environments such as online or informal Education environments. How these characteristics of science
inquiry look in practice in both the face-to-face and online classrooms has been discussed elsewhere by the authors
(Baptiste et al., 2011). Software processes are specified for a number of reasons: to facilitate human understanding,

217 Boriss Misnevs and Ugur Demiray / Procedia Engineering 178 (2017) 213 – 222

communication, and coordination; to aid management of software projects; to measure and improve the quality of
software products in an efficient manner; to support process improvement; and to provide a basis for automated
support of process execution. Enable Effective Communications: modelling employs the application domain
vocabulary of the software, a modelling language, and semantic expression (in other words, meaning within
context). When used rigorously and systematically, this modelling results in a reporting approach that facilitates
effective communication of software information to project stakeholders. Management sponsorship supports
development process, product evaluations and the resulting quality findings. Then an improvement program is
developed identifying detailed actions and improvement projects to be addressed in a feasible time frame.
Management support implies that each improvement project has enough resources to achieve the goal defined for it.
Management sponsorship is solicited frequently by implementing proactive communication activities. Different
types of reviews and audits are distinguished by their purpose, levels of independence, tools and techniques, roles,
and by the subject of the activity. Success of a software engineering endeavor depends upon positive interactions
with stakeholders. They should provide support, information, and feedback at all stages of the software life cycle
process. Therefore, it is vital to maintain open and productive communication with stakeholders for the duration of
the software product’s lifetime (SWEBOK 3.0, 2014).

Multicultural environments can have an impact on the dynamics of a group. This is especially true when the
group is geographically separated or communication is infrequent, since such separation elevates the importance of
each contact. Intercultural communication is even more difficult if the difference in time zones make oral
communication less frequent.

More frequent communication, including face-to-face meetings, can help to mitigate geographical and cultural
divisions, promote cohesiveness, and raise productivity. Also, being able to communicate with teammates in their
native language could be very beneficial. It is vital that a software engineer communicate well, both orally and in
reading and writing. Successful attainment of software requirements and deadlines depends on developing clear
understanding between the software engineer and customers, supervisors, co-workers, and suppliers. Let’s have look
deeper to examples from the math course world.
If formula of square’ area indicates or shows, it means computing of square’ area in any language, even change of
the length of the sides does not chance way of computing of square’ area. Only numbers change and formula stay in
the same body. When we sow formula of square’ area, we think and animate in our mind that square’ area is equal to
one side’s square. These formulas are bringing a picture to our mind as automatically (see Fig.1).

Fig. 1. Pictures for circle and area of square.

We still remember these formulas as certain concept in picture form. It is just like traffic signs. Some formulas
are important for life science have the same importance for our daily life, so we do not forget them any time. We use
them automatically such as reflex. These are examples from the certain life science which learned at certain
education level in our education life. Some graphs are tell us very briefly what is happening in the diagram on some
increasing success, increasing producing or decreasing success, decreasing producing etc.

On graphing functions, with examples, try to give detailed info and matched mentioned subjects. The properties
of the graphs of linear, quadratic, rational, trigonometric, absolute value, logarithmic, exponential and piecewise
functions are analyzed in details. Detailed info and explanations to the examples are included. As seen in these
examples we do not need to talk or tell much. Concepts such as asymptotes or colors for graphs of rational,
logarithmic and exponential functions are explored numerically. It gives the main idea in general info at initial
seeming. They help us to tell very complex results in basic and brief explanation. Asymptotes, colors, legends and
charts have their own meanings which are decode in our mind immediately. This decoding tells us correlations and
differentiations with each other.

218 Boriss Misnevs and Ugur Demiray / Procedia Engineering 178 (2017) 213 – 222

Good practice for Software Engineering is UML usage (UML – Overview, 2016) as a meta-language. UML is a
standard language for specifying, visualizing, constructing, and documenting the artefacts of software systems.
Although UML is generally used to model software systems but it is not limited within this boundary. It is also used
to model non software systems as well like process flow in a manufacturing unit etc.

A picture is worth a thousand words, this absolutely fits while discussing about UML.
There are a number of goals for developing UML but the most important is to define some general purpose

modelling language which all modelers can use and also it needs to be made simple to understand and use.
UML is popular for its diagrammatic notations. For example, UML class is represented by the diagram divided

into four parts:

• The top section is used to name the class.
• The second one is used to show the attributes of the class.
• The third section is used to describe the operations performed by the class.
• The fourth section is optional to show any additional components.

The UML infrastructure is used to provide a reusable meta-language core. This is used to define UML itself.

4. Communication skills for Software Engineer

Optimal problem solving is made possible through the ability to investigate, comprehend, and summarize
information. Customer product acceptance and safe product usage depend on the provision of relevant training and
documentation. It follows that the software engineer’s own career success is affected by the ability to consistently
provide oral and written communication effectively and on time.

Software engineers are able to read and understand technical material. Technical material includes reference
books, manuals, research papers, and program source code. Reading is not only a primary way of improving skills,
but also a way of gathering information necessary for the completion of engineering goals. A software engineer sifts
through accumulated information, filtering out the pieces that will be most helpful. Customers may request that a
software engineer summarize the results of such information gathering for them, simplifying or explaining it so that
they may make the final choice between competing solutions.

Reading and comprehending source code is also a component of information gathering and problem solving.
When modifying, extending, or rewriting software, it is critical to understand both its implementation directly
derived from the presented code and its design, which must often be inferred.

Software engineers are able to produce written products as required by customer requests or generally accepted
practice. These written products may include source code, software project plans, software requirement documents,
risk analyses, software design documents, software test plans, user manuals, technical reports and evaluations,
justifications, diagrams and charts, and so forth. Writing clearly and concisely is very important because often it is
the primary method of communication among relevant parties. In all cases, written software engineering products
must be written so that they are accessible, understandable and relevant for their intended audience(s).

Software engineers rely on their presentation skills during software life cycle processes. For example, during the
software requirements phase, software engineers may walk customers and teammates through software requirements
and conduct formal requirements reviews (see Requirement Reviews in the Software Requirements KA). During and
after software design, software construction, and software maintenance, software engineers lead reviews, product
walkthroughs (see Review and Audits in the Software Quality KA), and training. All of these require the ability to
present technical information to groups and solicit ideas or feedback.

The software engineer’s ability to convey concepts effectively in a presentation therefore influences product
acceptance, management, and customer support; it also influences the ability of stakeholders to comprehend and
assist in the product effort. This knowledge needs to be archived in the form of slides, knowledge write-up, technical
whitepapers, and any other material utilized for knowledge creation (SWEBOK 3.0, 2014).

Written communication is also extensively used in IT project activities, such as project and product
documentation which included operation manuals, check lists data cards etc. It is a one way communication, the

219 Boriss Misnevs and Ugur Demiray / Procedia Engineering 178 (2017) 213 – 222

checklist or documents send the information but it is up to the Software Engineer to interpret the message and then
take actions based on their understandings.

5. Team and Group Communication

Effective communication among team and group members is essential to a collaborative software engineering
effort. Stakeholders must be consulted, decisions must be made, and plans must be generated. The greater the
number of team and group members, the greater the need to communicate. The number of communication paths,
however, grows quadratic ally with the addition of each team member. Further, team members are unlikely to
communicate with anyone perceived to be removed from them by more than two degrees (levels). This problem can
be more serious when software engineering endeavors or organizations are spread across national and continental
borders. Some communication can be accomplished in writing. Software documentation is a common substitute for
direct interaction. Email is another but, although it is useful, it is not always enough; also, if one sends too many
messages, it becomes difficult to identify the important information.

One of the fundamental principles of a good requirements elicitation process is that of effective communication
between the various stakeholders. This communication continues through the entire Software Development Life
Cycle process with different stakeholders at different points in time. Before development begins, requirements
specialists may form the conduit for this communication. They must mediate between the domain of the software
users (and other stakeholders) and the technical world of the software engineer. A set of internally consistent models
at different levels of abstraction facilitate communications between software users/stakeholders and software
engineers.

It is typically necessary to validate the quality of the models developed during analysis. For example, in object
models, it is useful to perform a static analysis to verify that communication paths exist between objects that, in the
stakeholders’ domain, exchange data.

If formal analysis notations are used, it is possible to use formal reasoning to prove specification properties.
Applying external or internal development standards during construction helps achieve a project’s objectives for
efficiency, quality, and cost. Standards that directly affect construction issues include communication methods (for
example, standards for document formats and contents) (SWEBOK 3.0, 2014).

Communication tools can assist in providing timely and consistent information to relevant stakeholders involved
in a project. These tools can include things like email notifications and broadcasts to team members and
stakeholders. They also include communication of minutes from regularly scheduled project meetings, daily stand-
up meetings, plus charts showing progress, backlogs, and maintenance request resolutions.

6. Methodology of the meta-model presentation

Effective communication among team and group members is essential to a collaborative software engineering
effort. Stakeholders must be consulted, decisions must be made, and plans must be generated. The greater the
number of team and group members, the greater the need to communicate.

The methodology recommended for the research of the role of communication and meta-communication in
software engineering with relation to human errors is a heuristic application of TOGA (Top-down Object based Goal
oriented Approach). TOGA is the goal-oriented knowledge ordering (conceptual modelling) tool for the
specification and system/process identification of real-world complex problems (Gadomski, 1997).

In such sense, it can be seen as an initial top/generic and axioms-based meta-model, and subsequently, the
methodology of problem decomposition and specialization using available knowledge (see Fig.2).

Top-down means: From most general minimal information on a problem to its detailed
specification/identification system/process identification. Such approach enables a control/check of the completeness
and congruence of system/process identification in every problem specialization step.

It requires an initial sufficient amount of information, knowledge and preferences related to the problem, their
subsequent acquisition during the problem system/process identification, and the additional specialization patterns
assembled in TOGA as Knowledge Ontology Conceptualization System (KNOCS). KNOCS includes top: meta-
modelling axioms, assumptions and model frames.

220 Boriss Misnevs and Ugur Demiray / Procedia Engineering 178 (2017) 213 – 222

Fig. 2. The methodology of the presentation is a heuristic application of TOGA (Gadomski, 1993).

Object-based indicates a fundamental conceptualization platform of the meta-theory, called the Theory of
Abstract Objects (TAO). It is not object-oriented, it assumes that every problem can be represented using the
frameworks of world of abstract objects and these worlds universes. The concept of abstract object is defined as
everything what can be conceptualized as (<names>, <attributes list>, <values>). Attributes result from objects
relations and the change concept. This assumption consists of the primary axiom of the perception of the real world
and is considered as the basis of the conscious reasoning of an intelligent entity/agent.

Goal-oriented; it is equivalent to goal-driven, goal-based, goal-directed, teleological and similar approaches,
where the methods and methodology applied, in the real-time of the problem solving, confront the attributes of the
pre-defined activity/design goal with those which result from candidates on the problem sub-models. The
dominating top-goal is defined from the socio-cognitive perspective, and it is always the goal of the human or
artificial problem solver, decision-maker or designer.

The goal-oriented and top-down rules of system/process identification are included in the Methodological RUles
System (MRUS) - the third TOGA component (Gadomski, 1997). For software engineers, TOGA aims to provide
the designer of complex engineering system, an intelligent-agent-based conceptualization with a structured set of
methods and rules to allow him to control top-down and goal-oriented conceptual modelling process/activity. It
enables to specify formally agent-based systems that can be implemented within an agent-based programming
platform.

For such tasks, TOGA also provides a global identification and design methodological framework for human-
computer intelligence-based systems. Its level of meta-formalization, top-down and goal-oriented requirements
enable together to cope with a symbolic (not a sub-symbolic) design and to develop a general incremental
intelligence (an abstract or synthetic intelligence). From the top systemic meta-philosophical perspective, the TOGA
computational philosophy is funded on the set of meta-assumptions/meta-axioms leading to the plausible
motivations and choices of the TOGA axioms.

Its main reference-point is a subjective perspective of an intelligent; entity, i.e. it assumes that humans acts on the
base of always limited available domain-knowledge, therefore every intelligent; agent/entity has his/her/its
individual philosophy and it evolves according to their dynamics and different fusions into intelligent aggregates.

Knowledge is found in the minds and bodies of thinking beings (Johnson, 1987). Learning is the construction of
knowledge by individuals as sensory data are given meaning in terms of their prior knowledge. It is an interpretive
process, involving constructions of individuals and social collaboration (Tobin et al., 1990). Dynamic models of

221 Boriss Misnevs and Ugur Demiray / Procedia Engineering 178 (2017) 213 – 222

meta-communication are discussed in the book (Demiray et al., 2012). The concepts of the meta-communication
model are mainly based on Avatar Manager and Student Reflective Conversations pedagogical theory.

The IT project manager must know the communication processes involved in effective project management. First
of all there should be planning to determine what information needs to be communicated to all stakeholders in the
project.

Finally, communication with project stakeholders must be managed so that all requirements are met and issues
are promptly resolved. Interactions and overlap among the communication processes are inevitable and expected
throughout all phases of project management.

This research looks to improve software quality (see Fig.3) in a new way by assuming that human
communication error is a key cause of software defects.

Fig. 3. Defect Prevention Process in Software Engineering.

Research from cognitive psychology is used to develop a deeper understanding of the human errors that occur
during the software development process and to develop techniques that detect and prevent those errors early in the
software development lifecycle. Early elimination of mistakes will improve software quality and reduce overall
development cost. (Carver and Walia, 2014).

Introduction of new intellectual SE tools could completely change the scheme of communication in IT Project.
For example, MIT computer scientists (Conner-Simons, 2015) suggested CSAIL’s “Helium” tool for bit-rot problem
solving. Bit rot is the slow deterioration in the performance and integrity of data stored on storage media.

This new computer program can automatically fix old code so that engineers can focus on more important tasks.
CSAIL’s “Helium” system revamps and fine-tunes code without ever needing the original source, in a matter of
hours or even minutes.

The second case consider the human being (test engineer, developer) to be outside communication process for
decision making and bug fix implementation. So we will have two different schemes of communications.

7. Conclusions

Communication is an essential process in the world of IT project management. It is difficult to master, but
essential to make a good effort in achieving.

In this paper, we have described a Meta-communication model, which extends the spectrum of earlier discussed
approaches to Meta-communication modelling for Software Engineering processes.

Communication in global context remains a challenge and the value-consensus formation nearly impossible in the
short run. Suggested model provides a way for systematically and meaningfully structuring and organizing meta-
level conversations within IT projects.

222 Boriss Misnevs and Ugur Demiray / Procedia Engineering 178 (2017) 213 – 222

Thus, it can be used in several Software Engineering processes, in order to enable effective meta-communication.
It is argued that meta-communication, i.e. communication about communication rules, is a general integration
methodology that is applicable to the integration of architectures, protocols, and systems.

Efforts towards the development of an automated methodology for meta-communication are discussed. The
authors view that meta-communication as a design problem. The developed models can be used for training the IT
project management executive staff.

Acknowledgements

The research is part of the project “Implementation of Software Engineering Competence Remote Evaluation for
Master Program Graduates (iSECRET)” run by TTI, contract No. 2015-1-LV01-KA203-013439, co-financed by EC
ERASMUS+ program.

References

Bateson, G. (1972) Steps to Ecology of Mind: Collected Essays in Anthropology, Psychiatry, Evolution, and Epistemology. University of
Chicago Press.

Baptiste, H.P., Neakrase, J.J. and Ryan, A. (2011) Relevant issues that challenge the designing of transformative, liberating on-line science
education. In Handbook of research on transformative on-line and liberation: models for social equality, pp. 47–66.

Carver, J.and Walia,G. (2014) Integrating Software Engineering and Human Error Models To Improve Software Quality, 2014. Available at:
http://humanerrorinse.org (accessed 24 August 2016).

Demiray, U., Kurubacak, G. and T., Yuzer, V. (2012) Meta-communication for Reflective Online Conversations: Models for Distance Education.
Anadolu University, Turkey.

Gadomski, A.M. (1993) Ontology & Knowledge: Meta-Ontological Perspective. Meta-Knowledge Engineering Server. Rome: ENEA, 2002-07.
Last updated 2004-07. Available at: http://erg4146.casaccia.enea.it/Ont-know.htm (accessed 24 August 2016).

Gadomski, A.M. (1997) Global TOGA Meta-Theory/ Available at: http://erg4146.casaccia.enea.it/wwwerg26701/Gad-toga.htm (accessed 24
August 2016).

Gibson, E.J. (1977) The performance concept in building. In: Proceedings of the 7th CIB Triennial Congress, Edinburgh, September 1977.
London: Construction Research International, pp. 129-136.

E-Mail Etiquette (2014) Available at: http://www.it.cornell.edu/services/guides/email/polite.cfm (accessed 24 August 2016).
Staal, F. (2010) A Theory of Ritual? Available at:

https://www.knaw.nl/shared/resources/actueel/bestanden/11102010_Lezing_Frits_Staal_A_theory_of_ritual.pdf (accessed 24 August 2016).
McLean, R.S. (1999) Communication Widgets for Knowledge Building in Distance Education.Computer Support for Collaborative Learning

Proceedings of the 1999 conference on Computer support for collaborative learning, 1999, Palo Alto, California December 12–15.
Meandzija, B. (1990) Integration through meta-communication. INFOCOM '90, 9th Annual Joint Conference of the IEEE Computer and

Communication Societies.The Multiple Facets of Integration.Proceedings vol.2, IEEE.pp.702-709.
Misnevs, B.and Yatskiv I. (2016) Data Science: Professional Requirements and Competence Evaluation. Baltic Journal of Modern Computing,

4(3), 441–453.
Neakrase J, Prentice Baptiste H., Ryan A. and Villa E., (2011) Science for All through Reflective Interactions: Analyzing Online Instructional

Models, Learning Activities and Virtual Resources, In: Meta-Communication for Reflective Online Conversations: Models for Distance
Education. Igi Global.

Pennycook, A. (1985) Actions speak louder than words: Paralanguage, communication, and education. TESOL Quarterly, 19, 259–282.
Redmill F. and Rajan J. (1997) Human factors in safety-critical systems.Butterworth-Heinemann.
Spichkova M., Huai Liu, Mohsen Laali, and Heinz W. Schmidt (2015) Human Factors in Software Reliability Engineering. Available at:

http://arxiv.org/pdf/1503.03584v1.pdf (accessed 24 August 2016).
SWEBOK 3.0 (2014) Guide to the Software Engineering Body of Knowledge Version 3.0, IEEE. Available at: http://www.swebok.org (accessed

24 August 2016).
Tobin, K., Briscoe, C.and Holman, J.R. (1990) Overcoming constraints to effective elementary science teaching. Science Education, 74(4), 409–

420.
Ulrich, W. (2001) A Philosophical Staircase for Information Systems Definition, Design and Development. Journal of Information Technology

Theory and Application, 3, 55–84.
UML – Overview. Available at: http://www.tutorialspoint.com/uml/uml_overview.htm (accessed 24 August 2016).
Yetim, F. (2004) A Meta-communication Model for Reflective Practitioners. Available at:

http://www.ics.uci.edu/~redmiles/chiworkshop/papers/Yetim.pdf (accessed 24 August 2016).

